Daikon Invariant Detector User Manual

Daikon version 5.8.2

DRAFT Version 4 May 2020

Copyright © 1998-2014

Table of Contents

1 Introduction............ 1
1.1 Mailing Lists ..ot e 1
2 Installing Daikon................, 2
2.1 Requirements for running Daikon.......... 2
2.2 Installation 2

3 Example usage for Java, C/C++4, C+# /F# /Visual Basic,

Perl, and Eiffel 4

3.1 Detecting invariants in Java programsc..oeiiiiiiiiiiiiiiiiio... 4
3.1.1 StackAr exampleo 4
3.1.2 Detecting invariants when running a Java program from a jar file.........)
3.1.3 Understanding the invariants.......... i i i, 6
3.1.4 A second Java example. 6
3.2 Detecting invariants in C/CH+ Programs.eueeeuinenuaneneneenen.. 8
3.2.1 C eXAIMPIES .« o oottt 8
3.2.2 Dealing with large examples............ i 9
3.3 Detecting invariants in C#, F#, and Visual Basic programs.................. 10
3.4 Detecting invariants in Perl programs i 10
3.4.1 Instrumenting Perl programs.......... i i 10
3.4.2 Perl examples.o e 10
3.5 Detecting invariants in Eiffel programs i 12
3.6 Detecting invariants in Simulink/Stateflow programs.......................... 12
4 Running Daikon................ 13
4.1 Options to control Daikon output, 13
4.2 Options to control invariant detection............., 15
4.3 Processing only part of the trace file........ o 16
4.4 Daikon configuration options........... ..o 16
4.5 Daikon debugging options. 17
5 Daikonoutput....... 18
5.1 Invariant Syntax 18
5.2 Program PoOintS 19
5.2.1 OBJECT and CLASS program pointsoueeiuienueenneaann... 19
5.3 Variable Names e 20
5.3.1 orig() variable example........ 22
5.4 Interpreting Daikon output........ ..o 22
5.4.1 Redundant invariants ... 23
5.4.2 Equal variables.o 23
5.4.3 Has only one value variables........... 23
5.4.4 Object inequality e 23
5.5 Imvariant List. 23
5.6 Inmvariant filberst e 42

DRAFT 4 May 2020

6 Enhancing Daikon output................................ 44
6.1 Configuration optionst 44
6.1.1 List of configuration options......... i i 44
6.1.1.1 Options to enable/disable filters............. 44
6.1.1.2 Options to enable/disable specific invariants 45
6.1.1.3 Other invariant configuration parameters 45
6.1.1.4 Options to enable/disable derived variables......................... 46
6.1.1.5 Simplify interface configuration options.............., 46
6.1.1.6 Splitter Optionsoi e 48
6.1.1.7 Debugging options 48
6.1.1.8 General configuration options........... ..., 49
6.2 Conditional invariants (disjunctions) and implications 53
6.2.1 Splitter info file format........ 54
6.2.1.1 Program point Sections..............oiiiiiiiiiiiii i 54
6.2.1.2 Replacement Sections.ttt 55
6.2.2 Indiscriminate splitting......... ... i 55
6.2.3 Example splitter info file..... 55
6.2.3.1 Example class. 55
6.2.3.2 Resulting .spinfo file..... 56
6.3 Enhancing conditional invariant detection................ol 57
6.3.1 Static analysis for splitterso 57
6.3.1.1 Static analysis of Java for splitters............. 57
6.3.1.2 Static analysis of C for splitters, 57
6.3.2 Cluster analysis for splitters..........o i i 58
6.3.3 Random selection for splitters............ ..o 58
6.4 Dynamic abstract type inference (DynComp)...........cooiiiiiiiiiiiiia... 59
6.5 LoOD INVATIANESttt e 59
7 Front ends (instrumentation) 61
7.1 Java front end Chicory e e 61
711 CRICOTY OPIONS . . oottt et e 61
7.1.1.1 Program points in Chicory output........... ..., 62
7.1.1.2 Variables in Chicory output, 63
7.1.1.3 Chicory miscellaneous optionso, 65
7.1.2 Static fields (global variables) il 66
7.1.3 Troubleshooting Chicoryo 66
7.2 DynComp dynamic comparability (abstract type) analysis for Java 66
7.2.1 Instrumenting the JDK with DynComp........... 70
7.2.2 DynComp OPtiONS. ... uutt it e 70
7.2.3 Instrumentation of Object methods............ i i, 72
7.2.4 Troubleshooting DynComp for Javao iiiiiia.. 72
7.2.5 Known bugs and limitations........... ... i i 72
7.3 C/CH+ front end Kvasir....... ..o 73
7.3.1 Using Kvasir.ot e 73
7.3.2 Kvasir OpbIONS . ..o oottt e 74
7.3.3 DynComp dynamic comparability (abstract type) analysis for C/C++ ... 78
7.3.4 Tracing only part of a program.......... ... 80
7.3.5 Pointer type disambiguation........... ... i 83
7.3.5.1 Pointer type COETCIONot e 84
7.3.5.2 Pointer type disambiguation example............. o 85
DRAFT

ii

4 May 2020

iii

7.3.5.3 Using pointer type disambiguation with partial program tracing. 87
T7.3.6 Gt SUPPOTT ettt et e e e 88
7.3.7 Online executiono e 89
7.3.7.1 Online execution with DynComp for C/C++ 90
7.3.8 Installing Kvasiro 90
7.3.9 Kvasir implementation and limitations................ 91
7.4 NET (C#) front end Celeriac........... ... oo 92
7.5 Perl front end dfepl 92
7.5.1 dfepl options. 95
7.6 Comma-separated-value front end convertcsv.pl........... L. 98
7.7 Other front ends i 98
8 Tools for use with Daikon............................... 100
8.1 Tools for manipulating invariants i 100
8.1.1 Printing invariants..........cooooii i e 100
8.1.2 Mergelnvariants.ccooiiiini i e 101
8.1.3 Imvariant Diff 101
8.1.4 ANnotate ... e 102
8.1.5 AnmnotateNullable 103
8.1.6 Runtime-check instrumenter (runtimechecker) 104
8.1.6.1 How to access violations. ..., 105
8.1.6.2 Problems compiling instrumented code 106
8.1.7 InvariantChecker. i 106
8.1.8 LogicalCOompPare.uutt it 107
8.2 DtraceDiff utilityo 109
8.3 Reading dtrace files. 110
9 Troubleshooting 111
9.1 Problems running Daikon 111
9.1.1 Can’t run Daikon: could not find or load main class, or
NoClassDefFoundError e 111
9.1.2 File Input €ITOTS . ..o v et e e 111
9.1.3 decl format errors.t 111
9.1.4 Too much outpub 112
9.1.5 Missing output invariants i i 112
9.1.6 True invariants are not reported due to output filters................... 113
9.1.7 No samples and no output ... 113
9.1.8 No return from procedure.......... ..o 114
9.1.9 Unsupported class VEISIONttt 114
9.1.10 Out of MemMOTY .. oot 114
9.1.11 SIMPLfy errors. e 115
9.1.11.1 Installing Simplify 115
9.1.12 Contradictory invariantso 115
9.1.13 Method needs to be implemented 116
9.1.14 Daikon runs slowly. 116
9.1.14.1 Slow creation of large trace files........l 116
9.1.14.2 Slow inference of invariants............. ... i, 117
9.1.15 Bigger traces cause invariants to appear.............. .. i, 117
9.2 Large data trace (.dtrace) files....... 117
9.2.1 Compressed .dtrace files. ... 117

DRAFT 4 May 2020

9.2.2 Save large files in a scratch directory ... 117

9.2.3 Run Daikon online............. .. i 118

9.2.4 Create multiple smaller data trace files................................. 118

9.2.5 Record or read less information in the data trace file.................... 118

9.2.5.1 Reducing program points (functions)cooiiia.. 118

9.2.5.2 Reducing variables 119

9.2.5.3 Reducing executionsccoouiiiiiiii i 119

9.3 Problems with Chicory...... ..o e 119

9.3.1 BCEL must be in the classpath 120

9.3.2 ClassFormatError LVTT entry does not match 120

9.3.3 Attempted duplicate class definition error 120

9.4 Reporting problemsoii i 120

9.5 Further reading. ..ot 121

10 Details..........o 122

O R G] 7o) PP 122

10.2 LACEDSE . oottt 123

10.2.1 Library HCenSesottt e 123

10.2.1.1 getopt license . ..o 123

10.2.1.2 JURIt HCENSE . .o vttt e 123

10.2.2 Front end HCenSes.ounn it e 123

10.2.2.1 dfepl HCENSE. . e 124

10.2.2.2 Kvasir HiCenset e 124

10.2.2.3 Celeriac licensettt 124

10.3 Mailing lists reminder. o 124

10,4 CreditsS .o oot 125

10.5 Citing Daikon 125

General Index 126
DRAFT

iv

4 May 2020

Chapter 1: Introduction 1

1 Introduction

Daikon is an implementation of dynamic detection of likely invariants; that is, the Daikon invariant
detector reports likely program invariants. An invariant is a property that holds at a certain point or points
in a program; these are often seen in assert statements, documentation, and formal specifications. Invariants
can be useful in program understanding and a host of other applications. Examples include ‘x.field >
abs(y)’; ‘y = 2%x+3’; ‘array a is sorted’; for all list objects Ist, ‘1st.next.prev = 1st’; for all treenode
objectsn, ‘n.left.value < n.right.value’; ‘p !=null => p.content in myArray’; and many more. You
can extend Daikon to add new properties (see Chapter 6 [Enhancing Daikon output], page 44, or see Section
“New invariants” in Daikon Developer Manual).

Dynamic invariant detection runs a program, observes the values that the program computes, and then
reports properties that were true over the observed executions. Daikon can detect properties in C, C++,
C+#, Eiffel, F#, Java, Perl, and Visual Basic programs; in spreadsheet files; and in other data sources.
(Dynamic invariant detection is a machine learning technique that can be applied to arbitrary data.) It is
easy to extend Daikon to other applications.

Daikon is freely available for download from download-site. The distribution includes both source code
and documentation, and Daikon’s license permits unrestricted use (see Section 10.2 [License|, page 123).
Many researchers and practitioners have used Daikon; those uses, and Daikon itself, are described in various
publications.

For more information on Daikon, see Section “Introduction” in Daikon Developer Manual. For instance,
the Daikon Developer Manual indicates how to extend Daikon with new invariants, new derived variables,
and front ends for new languages. It also contains information about the implementation and about
debugging flags.

1.1 Mailing lists

The following mailing lists (and their archives) are available:

‘daikon-announce@googlegroups . com’
A low-volume, announcement-only list. For example, announcements of new releases are sent to this
list. To subscribe, visit https://groups.google.com/forum/#!forum/daikon-announce.

‘daikon-discuss@googlegroups.com’
A moderated list for the community of Daikon users. Use it to share tips and successes, and to get
help with questions or problems (after checking the documentation). To subscribe, visit https://
groups.google.com/forum/#!forum/daikon-discuss.

‘daikon-developers@googlegroups.com’
This list goes to the Daikon maintainers. Use it for bug reports, suggestions, and the like. If you are
an active contributor to Daikon, you may send mail to the list asking to be added.

Do not send the same message to multiple mailing lists. Doing so is antisocial: it causes confusion and
extra work. If you do so, your question will not be answered.

DRAFT 4 May 2020

http://plse.cs.washington.edu/daikon/
http://plse.cs.washington.edu/daikon/download/
http://plse.cs.washington.edu/daikon/download/doc/
http://plse.cs.washington.edu/daikon/pubs/
https://groups.google.com/forum/#!forum/daikon-announce
https://groups.google.com/forum/#!forum/daikon-discuss
https://groups.google.com/forum/#!forum/daikon-discuss

Chapter 2: Installing Daikon 2

2 Installing Daikon

Shortcut for the impatient: skip directly to the Section 2.2 [Installation], page 2 instructions.

The main way to install Daikon is from a release, as explained in this section. (Alternately, see Section
“Version control repository” in Daikon Developer Manual, to obtain the latest Daikon source code from
its version control repository.) Here is an overview of the steps.

1. Download Daikon.

2. Place two commands in your shell initialization file.

3. Optionally, customize your installation.

4. Compile Daikon and build other tools. (This is optional but often needed.)

Details appear below; select the instructions for your operating system.

Differences from previous versions of Daikon appear in the file doc/CHANGES in the distribution. To
be notified of new releases, or to join discussions about Daikon, subscribe to one of the mailing lists (see
Section 1.1 [Mailing lists|, page 1).

2.1 Requirements for running Daikon

In order to run Daikon, you must have a Java 8 (or later) JDK, including a Java Virtual Machine and
a Java compiler.

If you wish to analyze C or C++ programs, you need a C or C++ compiler such as gcc.

If you wish to edit the Daikon source code and re-compile Daikon, see Section “Compiling Daikon” in
Daikon Developer Manual.

Daikon is supported on Unix-like environments, including Linux, Mac OS X, and Windows Subsystem
for Linux (WSL). It is not supported on Windows or Cygwin.

2.2 Installation

1. Choose the directory where you want to install Daikon; we’ll call this the daikonparent directory. In
this directory, download and unpack Daikon.
cd daikonparent
wget http://plse.cs.washington.edu/daikon/download/daikon-5.8.2.tar.gz
tar zxf daikon-5.8.2.tar.gz
This creates a daikonparent/daikon-5.8.2/ subdirectory.
2. Place two commands in your shell initialization file: set an environment variable and source a Daikon
startup file.
We will assume that you are using the bash shell or one of its variants. Add commands like these to
your ~/.bashrc or ~/.bash_profile file:

The absolute pathname of the directory that contains Daikon
export DAIKONDIR=daikonparent/daikon-5.8.2
source $DAIKONDIR/scripts/daikon.bashrc

After editing your shell initialization file, either execute the commands you placed in it (e.g., run
source ~/.bashrc), or else log out and log back in to achieve the same effect.

3. Optionally, customize other variables. The customizable variables are listed in the Daikon startup file:
$DATKONDIR/scripts/daikon.bashrc.
You may customize them by setting environment variables, or by adding a Makefile.user file to
directory $DAIKONDIR/java (it is automatically read at the beginning of the main Makefile, and
prevents you from having to edit the main Makefile directly).

DRAFT 4 May 2020

CHANGES
https://www.oracle.com/technetwork/java/javase/overview/index.html

Chapter 2: Installing Daikon 3

4. Compile Daikon and build other tools. Strictly speaking, this step is optional, but some parts of this
are required in order to infer invariants in Java programs, and other parts are needed in order to
infer invariants in C programs. First, make sure that you have satisfied the requirements in Section
“Requirements for compiling Daikon” in Daikon Developer Manual and Section “Requirements for
compiling Kvasir” in Daikon Developer Manual. Then, run:

make -C $DAIKONDIR rebuild-everything
This builds the various executables used by Daikon, such as the C/C++ front end Kvasir (see
Section 7.3.8 [Installing Kvasir], page 90) and the JDK for use with DynComp (see Section 7.2.1
[Instrumenting the JDK with DynComp], page 70). If you need more information about compiling
Daikon, see Section “Compiling Daikon” in Daikon Developer Manual. If you have trouble compiling
the C/C++ front end Kvasir, see See Section 7.3.8 [Installing Kvasir|, page 90.
Note that running this make command may take 20 minutes or more, depending on your computer.

Optionally, download other executables, such as the Simplify theorem prover (see Section 9.1.11.1
[Installing Simplify], page 115).

DRAFT 4 May 2020

Chapter 3: Example usage for Java, C/C++, C#/F# /Visual Basic, Perl, and Eiffel 4

3 Example usage for Java, C/C++, C# /F+#/Visual Basic,
Perl, and Eiffel

Detecting invariants involves two steps:

1. Obtain one or more data trace files by running your program under the control of a front end (also
known as an instrumenter or tracer) that records information about variable values. You can run your
program over one or more inputs of your own choosing, such as regression tests or a typical user input
session. You may choose to obtain trace data for only part of your program; this can avoid inundating
you with output, and can also improve performance.

2. Run the Daikon invariant detector over the data trace files (see Chapter 4 [Running Daikon], page 13).
This detects invariants in the recorded information. You can view the invariants textually, or process
them with a variety of tools.

This section briefly describes how to obtain data traces for Java, C, C#, Perl, and Eiffel programs,
and how to run Daikon. For detailed information about these and other front ends that are available for
Daikon, see Chapter 7 [Front ends (instrumentation)], page 61.

3.1 Detecting invariants in Java programs

In order to detect invariants in a Java program, you will run the program twice — once using DynComp
(see Section 7.2 [DynComp for Javal, page 66) to create a .decls file and once using Chicory (see Section 7.1
[Chicory], page 61) to create a data trace file. Then, run Daikon on the data trace file to detect invariants.
With the --daikon option to Chicory, a single command performs the last two steps.

For example, if you usually run
java —cp myclasspath mypackage.MyClass argl arg2 arg3
then instead you would run these two commands:

java -cp myclasspath:$DAIKONDIR/daikon. jar daikon.DynComp mypackage.MyClass argl arg2 arg3
java -cp myclasspath:$DAIKONDIR/daikon.jar daikon.Chicory --daikon \
—--comparability-file=MyClass.decls-DynComp \
mypackage .MyClass argl arg2 arg3

and the Daikon output is written to the terminal.

3.1.1 StackAr example

The Daikon distribution contains some sample programs that will help you get practice in running
Daikon.

To detect invariants in the StackAr sample program, perform the following steps after installing Daikon
(see Chapter 2 [Installing Daikon], page 2).

1. Compile the program with the -g switch to enable debugging symbols. (The program and test suite
appear in the DataStructures subdirectory.)

cd examples/java-examples/StackAr
javac -g DataStructures/*.java

2. Run the program under the control of DynComp to generate comparability information in the file
StackArTester.decls-DynComp.

java -cp .:$DAIKONDIR/daikon.jar daikon.DynComp DataStructures.StackArTester

3. Run the program a second time, under the control of the Chicory front end. Chicory observes the
variable values and passes the information to Daikon. Daikon infers invariants, prints them, and writes
a binary representation of them to file StackArTester.inv.gz.

DRAFT 4 May 2020

Chapter 3: Example usage for Java, C/C++, C#/F# /Visual Basic, Perl, and Eiffel 5

java -cp .:$DAIKONDIR/daikon.jar daikon.Chicory --daikon \
—--comparability-file=StackArTester.decls-DynComp \
DataStructures.StackArTester
Alternately, replacing the -—daikon argument by --daikon-online has the same effect, but does not
write a data trace file to disk.

If you wish to have more control over the invariant detection process, you can split the third step above
into multiple steps. Then, step 3 would become:
3. Run the program under the control of the Chicory front end in order to create a trace file named
StackArTester.dtrace.gz.
java -cp .:$DAIKONDIR/daikon.jar daikon.Chicory \
—--comparability-file=StackArTester.decls-DynComp \
DataStructures.StackArTester
4. Run Daikon on the trace file.
java -cp $DAIKONDIR/daikon.jar daikon.Daikon StackArTester.dtrace.gz
Daikon can analyze multiple runs (executions) of the program. You can supply Daikon with multiple
trace files:

java -cp .:$DAIKONDIR/daikon.jar daikon.Chicory \
--dtrace-file=StackArTesterl.dtrace.gz \
--comparability-file=StackArTester.decls-DynComp DataStructures.StackArTester
java -cp .:$DAIKONDIR/daikon.jar daikon.Chicory \
--dtrace-file=StackArTester2.dtrace.gz \
—--comparability-file=StackArTester.decls-DynComp DataStructures.StackArTester
java -cp .:$DAIKONDIR/daikon.jar daikon.Chicory \
--dtrace-file=StackArTester3.dtrace.gz \
--comparability-file=StackArTester.decls-DynComp DataStructures.StackArTester
java -cp $DAIKONDIR/daikon.jar daikon.Daikon StackArTester*.dtrace.gz

(In this example, all the runs are identical, so multiple runs yield the same invariants as one run.)
5. Examine the invariants. (They were also printed to standard out by the previous step.)
There are various ways to do this.

e Examine the output from running Daikon. (You may find it convenient to capture the output in
a file; add ‘> StackAr.txt’ to the end of the command that runs Daikon.)

e Use the PrintInvariants program to display the invariants.
java -cp $DAIKONDIR/daikon.jar daikon.PrintInvariants StackArTester.inv.gz
For more options to the PrintInvariants program, see Section 8.1.1 [Printing invariants|,
page 100.
e Use the Annotate program to insert the invariants as comments into the Java source program.

cd ..
java -cp $DAIKONDIR/daikon.jar daikon.tools.jtb.Annotate StackArTester.inv.gz \
DataStructures/StackAr. java

(Here and elsewhere in the manual, the continuation character ‘\’ is used to split a long command
across lines.)

Now examine file DataStructures/StackAr. java-escannotated. For more information about
the Annotate program, see Section 8.1.4 [Annotate], page 102.

3.1.2 Detecting invariants when running a Java program from a jar file

If your Java program is run directly from a jar file, such as either of:

DRAFT 4 May 2020

Chapter 3: Example usage for Java, C/C++, C#/F# /Visual Basic, Perl, and Eiffel 6

java mypackage.jar arguments
java -cp myclasspath mypackage.jar arguments

then to detect invariants in that Java program, run these two commands:

java -cp myclasspath:$DAIKONDIR/daikon.jar daikon.DynComp <MyMain> arguments
java -cp myclasspath:$DAIKONDIR/daikon. jar daikon.Chicory --daikon \
-—-comparability-file=<MyMain>.decls-DynComp <MyMain> arguments

where <MyMain> is the Main-class of the jar file, which you can determine by running the command:
unzip -p mypackage.jar META-INF/MANIFEST.MF | grep ’“Main-Class:’

3.1.3 Understanding the invariants
This section examines some of the invariants for the StackAr example. For more help interpreting
invariants, see Section 5.4 [Interpreting output], page 22.

The StackAr example is an array-based stack implementation. Take a look at
DataStructures/StackAr.java to get a sense of the implementation. Now, look at the sixth
section of Daikon output.

StackAr: : :0BJECT

this.theArray != null

this.theArray.getClass() .getName() == java.lang.Object[].class
this.topO0fStack >= -1

this.top0fStack <= size(this.theArray[])-1

These four annotations describe the representation invariant. The array is never null, and its run-time
type is Object []. The top0fStack index is at least -1 and is less than the length of the array.

Next, look at the invariants for the top() method. top() has two different exit points, at lines 74 and
75 in the original source. There is a set of invariants for each exit point, as well as a set of invariants that
hold for all exit points. Look at the invariants when top() returns at line 75.

StackAr.top():::EXIT75

return == this.theArray[this.topOfStack]

return == this.theArrayl[orig(this.top0fStack)]
return == orig(this.theArray[post(this.top0fStack)])
return == orig(this.theArray[this.top0fStack])
this.topO0fStack >= 0

return != null

The return value is never null, and is equal to the array element at index top0fStack. The top of the
stack is at least 0.

3.1.4 A second Java example

A second example is located in the examples/java-examples/QueueAr subdirectory. Run this sample
using the following steps:

e Compile

cd examples/java-examples/QueueAr
javac -g DataStructures/*.java

e Trace file generation and invariant detection

DRAFT 4 May 2020

Chapter 3: Example usage for Java, C/C++, C#/F# /Visual Basic, Perl, and Eiffel 7

java -cp .:$DAIKONDIR/daikon.jar daikon.DynComp DataStructures.QueueArTester
java -cp .:$DAIKONDIR/daikon.jar daikon.Chicory --daikon \
--comparability-file=QueueArTester.decls-DynComp \
DataStructures.QueueArTester
Alternately, you can split the very last command into two parts:
e Trace file generation

java -cp .:$DAIKONDIR/daikon.jar daikon.Chicory \
—--comparability-file=QueueArTester.decls-DynComp \
DataStructures.QueueArTester

e Invariant detection
java -cp $DAIKONDIR/daikon.jar daikon.Daikon QueueArTester.dtrace.gz

DRAFT 4 May 2020

Chapter 3: Example usage for Java, C/C++, C#/F# /Visual Basic, Perl, and Eiffel 8

3.2 Detecting invariants in C/C++ programs

In order to detect invariants over C or C++ programs, you must first install a C/C++ front end (instru-
menter). We recommend that you use Kvasir (see Section 7.3 [Kvasir|, page 73), and this section gives
examples using Kvasir. By default, Kvasir also runs the DynComp tool to improve Daikon’s performance
and Daikon’s output by filtering out invariants involving unrelated variables (see Section 7.3.3 [DynComp
for C/C++], page 78).

To use the C/C++ front end Kvasir with your program, first make sure that your program has been
compiled with DWARF-2 format debugging information, such as by giving the -gdwarf-2 flag to gcc
when compiling. Some versions of gcc now output position independent code by default. Kvasir cannot
properly process these binaries. You must add the -no-pie option to disable this feature. Then, run your
program as usual, but prepend kvasir-dtrace to the command line.

Kvasir will produce two output files: a .dtrace file containing a trace of a particular execution, and a
.decls file that contains information about what variables and functions exist in a program, along with
information grouping the variables into abstract types. You will supply both of these files to Daikon.

For more information about Kvasir, including more detailed documentation on its command-line options,
see Section 7.3 [Kvasir|, page 73.

3.2.1 C examples
The Daikon distribution comes with several example C programs to enable users to become familiar with
running Daikon on C programs. These examples are located in the examples/c-examples directory.

To detect invariants for a program with Kvasir, you need to perform two basic tasks: run the program
under Kvasir to create a trace and declaration files (steps 1-3), and run Daikon over these files to produce
invariants (step 4). The following instructions are for the wordplay example, which is a program for finding
anagrams.

1. Change to the directory containing the program.
cd $DAIKONDIR/examples/c-examples/wordplay
2. Compile the program with DWARF-2 debugging information enabled (and all optimizations disabled).
gcc —gdwarf-2 -no-pie wordplay.c -o wordplay
Kvasir can also be used for programs constructed by compiling a number of .c files separately, and

then linking them together; in such a program, specify -gdwarf-2 when compiling each source file
containing code you wish to see invariants about.

3. Run the program just as you normally would, but prepend kvasir-dtrace to the command line.
kvasir-dtrace ./wordplay -f words.txt ’Daikon Dynamic Invariant Detector’

Any options to the program can be specified as usual; here, for instance, we give commands to look for
anagrams of the phrase “Daikon Dynamic Invariant Detector” using words from the file words. txt.

Executing under Kvasir, the program runs normally, but Kvasir executes additional checks and collects
trace information (for this reason, the program will run more slowly than usual). Kvasir creates a
directory named daikon-output under the current directory, and creates the wordplay.dtrace file,
which lists variable values, and the wordplay.decls file that contains information about what variables
and functions exist in a program, along with information grouping the variables into abstract types.

Kvasir will also print messages if it observes your program doing something with undefined effects;
these may indicate bugs in your program, or they may be spurious. (If they are bugs, they can also
be tracked down by using Valgrind (http://www.valgrind.org/) with its regular memory checking
tool; if they do not appear with that tool, they are probably spurious).

4. Run Daikon on the trace and declaration files.

DRAFT 4 May 2020

http://www.valgrind.org/

Chapter 3: Example usage for Java, C/C++, C#/F# /Visual Basic, Perl, and Eiffel 9

java -cp $DAIKONDIR/daikon.jar daikon.Daikon \
—--config_option daikon.derive.Derivation.disable_derived_variables=true \
daikon-output/wordplay.decls daikon-output/wordplay.dtrace
The invariants are printed to standard output, and a binary representation of the invariants is written
to wordplay.inv.gz. Note that the example uses a configuration option to disable the use of derived
variables; it can also run without that option, but takes significantly longer.

Daikon can analyze multiple runs (executions) of the program. You can supply Daikon with multiple
trace files:
kvasir-dtrace --dtrace-file=daikon-output/wordplayl.dtrace \
./wordplay -f words.txt ’daikon dynamic invariant detector’
kvasir-dtrace --no-dyncomp --dtrace-file=daikon-output/wordplay2.dtrace \
./wordplay -f words.txt ’better results from multiple rums’
kvasir-dtrace --no-dyncomp --dtrace-file=daikon-output/wordplay3.dtrace \
./wordplay -f words.txt ’more testing equals better testing’
java -Xmx256m daikon.Daikon daikon-output/wordplay*.dtrace daikon-output/wordplay.decls
Note that this example makes the assumption that the DynComp .decls information for wordplay
does not vary from run to run. Thus it specifies ——no-dyncomp on subsequent runs to improve
performance. (This assumption may not be true for other programs.)

Alternatively, you can append information from multiple runs in a single trace file:

kvasir-dtrace --dtrace-file=daikon-output/wordplay-all.dtrace \
./wordplay -f words.txt ’daikon dynamic invariant detector’

kvasir-dtrace --no-dyncomp --dtrace-append \
--dtrace-file=daikon-output/wordplay-all.dtrace \
./wordplay -f words.txt ’better results from multiple runs’

kvasir-dtrace --no-dyncomp --dtrace-append \
--dtrace-file=daikon-output/wordplay-all.dtrace \
./wordplay -f words.txt ’more testing equals better testing’

java -Xmx256m daikon.Daikon daikon-output/wordplay-all.dtrace daikon-output/wordplay.decls

5. Examine the invariants. As described in Section 3.1.1 [StackAr example|, page 4, there are several
ways to do this:

e Examine the output from running Daikon.
e Use the PrintInvariants program to display the invariants.

For help understanding the invariants, see Section 5.4 [Interpreting output|, page 22.

There is a second example C program in the bzip2 directory. It may be run in a similar fashion as
the wordplay example, but it is a more complex program and the kvasir-dtrace step may take several
minutes.

3.2.2 Dealing with large examples

Since the default memory size used by a Java virtual machine varies, we suggest that Daikon be run
with at least 256 megabytes of memory (and perhaps much more), specified for many JVMs by the option
-Xmx256m. For more information about specifying the memory usage for Daikon, see Section 9.1.10 [Out
of memory]|, page 114.

Disk usage can be reduced by specifying that the front end should compress its output .dtrace files.

In some cases, the time and space requirements of the examples can be reduced by reducing the length
of the program run. However, Daikon’s running time depends on both the length of the test run and the
size of the program data (such as its use of global variables and nested data structures). The examples also
demonstrate disabling derived variables, which significantly improves Daikon’s performance at the cost of
producing fewer invariants. For more techniques for using Daikon with large programs and long program
runs, see Section 9.2 [Large dtrace files|, page 117.

DRAFT 4 May 2020

Chapter 3: Example usage for Java, C/C++, C#/F# /Visual Basic, Perl, and Eiffel 10

3.3 Detecting invariants in C#, F#, and Visual Basic programs
The Daikon front end for .NET languages (C#, F#, and Visual Basic) is called Celeriac.

Please see its documentation at :
https://github.com/codespecs/daikon-dot-net-front-end.

3.4 Detecting invariants in Perl programs
The Daikon front end for Perl is called dfepl.

Using the Perl front end is a two-pass process: first you must run the annotated program so that
the runtime system can dynamically infer the kind of data stored in each variable, and then you must
re-annotate and re-run the program with the added type information. This is necessary because Perl
programs do not contain type declarations.

dfepl requires version 5.8 or later of Perl.

3.4.1 Instrumenting Perl programs

Perl programs must be instrumented twice. First they must be instrumented without type informa-
tion. Then, once the first instrumented version has been run to produce type information, they must be
instrumented again taking the type information into account.

To instrument a stand-alone Perl program, invoke dfepl with the name of the program as an argument.
dfepl program.pl

To instrument a Perl module or a collection of modules, invoke dfepl either with the name of each
module, or with the name of a directory containing the modules. To instrument all the modules in the
current directory, give dfepl the argument .. For instance, if the current directory contains a module
Acme: :Trampoline in Acme/Trampoline.pm and another module Acme: :Date in Acme/Date.pm, they can
be annotated by either of the following two commands:

dfepl Acme/Trampoline.pm Acme/Date.pm
dfepl .

Once type information is available, run the instrumentation command again with the -T or -t options
added to use the produced type information.

For more information about dfepl, see Section 7.5 [dfepl], page 92.

3.4.2 Perl examples

The Daikon distribution includes sample Perl programs suitable for use with Daikon in the
examples/perl-examples directory.

Here are step-by-step instructions for examining a simple module, Birthday.pm, as used by a test script
test-bday.pl.

1. Change to the directory containing the Birthday.pm module.
cd examples/perl-examples

2. Instrument the Birthday.pm file.
dfepl Birthday.pm

This command creates a directory daikon-untyped, and puts the instrumented version of Birthday . pm
into daikon-untyped/Birthday.pm. As the directory name implies, this instrumented version doesn’t
contain type information.

3. Run a test suite using the instrumented Birthday.pm file.

DRAFT 4 May 2020

https://github.com/codespecs/daikon-dot-net-front-end

Chapter 3: Example usage for Java, C/C++, C#/F# /Visual Basic, Perl, and Eiffel 11

dtype-perl test_bday.pl 10

The dtype-perl is a script that runs Perl with the appropriate command line options to find the
modules used by the Daikon Perl runtime tracing modules, and to use the instrumented versions of
modules in daikon-untyped in preference to their original ones. The number 10 is an argument to
the test_bday.pl script telling it to run a relatively short test.

This will also generate a file daikon-instrumented/Birthday.types recording the type of each vari-
able seen during the execution of the instrumented program.
4. Re-annotate the module using the type information.
dfepl -T Birthday.pm
This step repeats step 2, except that the -T flag to dfepl tells it to use the type information generated
in the previous step, and to put the output in the directory daikon-instrumented. dfepl also converts

the type information into a file daikon-output/Birthday.decls containing subroutine declarations
suitable for Daikon.

5. Run the full test suite with the type-instrumented Birthday.pm.
dtrace-perl test_bday.pl 30

Here we run another test suite, which happens to be the same test_bday.pl, but running for longer.
(The example will also work with a smaller number). The script dtrace-perl is similar to dtype-perl
mentioned earlier, but looks for instrumented source files in daikon-instrumented.

This creates daikon-output/test_bday-combined.dtrace, a trace file containing the values of vari-
ables at each invocation. (The file name is formed from the name of the test program, with —combined
appended because it contains the trace information from all the instrumented modules invoked from
the program).
6. Change to the daikon-output directory to analyze the output.
cd daikon-output
7. Run Daikon on the trace file
java -cp $DAIKONDIR/daikon.jar daikon.Daikon Birthday.decls test_bday-combined.dtrace

8. Examine the invariants. They are printed to standard output, and they are also saved to file
Birthday.inv.gz, which you can manipulate with the PrintInvariants program and other Daikon
tools. For example:

java -cp $DAIKONDIR/daikon.jar daikon.PrintInvariants Birthday.inv.gz

Invariants produced from Perl programs can be examined using the same tools as other Daikon in-
variants.

In the example above, the script test_bday.pl was not itself instrumented; it was only used to test the
instrumented code. The Perl front end can also be used to instrument stand-alone Perl programs. The
following sequence of commands, similar to those above, show how Daikon can be used with the stand-alone
program standalone.pl, also in the examples/perl-examples directory.

dfepl standalomne.pl

dtype-perl daikon-untyped/standalone.pl

dfepl -T standalone.pl

dtrace-perl daikon-instrumented/standalone.pl

cd daikon-output

java -cp $DAIKONDIR/daikon.jar daikon.Daikon -o standalone.inv standalone-main.decls \

standalone-combined.dtrace

Note two differences when running a stand-alone program. First, the instrumented versions of the program,
in the daikon-untyped or daikon-instrumented directory, are run directly. Second, the declarations file
is named after the package in which the subroutines were declared, but since every stand-alone program
uses the main package, the name of the program is prepended to the .decls file name to avoid collisions.

DRAFT 4 May 2020

Chapter 3: Example usage for Java, C/C++, C#/F# /Visual Basic, Perl, and Eiffel 12

3.5 Detecting invariants in Eiffel programs

CITADEL is an Eiffel front-end to the Daikon invariant detector. You can obtain Citadel from http://
se.inf.ethz.ch/people/polikarpova/citadel/.

3.6 Detecting invariants in Simulink/Stateflow programs

Hynger (HYbrid iNvariant GEneratoR) instruments Simulink/Stateflow (SLSF) block diagrams to gen-
erate Daikon input (.dtrace files). Hynger was created by Taylor Johnson, Stanley Bak, and Steven
Drager. You can obtain Hynger from https://bitbucket.org/verivital/hynger.

DRAFT 4 May 2020

http://se.inf.ethz.ch/people/polikarpova/citadel/
http://se.inf.ethz.ch/people/polikarpova/citadel/
https://bitbucket.org/verivital/hynger

Chapter 4: Running Daikon 13

4 Running Daikon

This section describes how to run Daikon on a data trace (.dtrace) file, and describes Daikon’s
command-line options. This section assumes you have already run a front end (e.g., an instrumenter)
to produce a .dtrace file (and optionally .decls and .spinfo files); to learn more about that process,
see Chapter 3 [Example usagel, page 4, and see Chapter 7 [Front ends (instrumentation)], page 61.

Run the Daikon invariant detector via the command

java -cp $DAIKONDIR/daikon.jar daikon.Daikon \
[flags] dtrace-files... \
[decls-files...] [spinfo-files...]

e The dtrace-files are data trace (.dtrace) files containing variable values from an execution of the
target program.

e The decls-files are declaration (.decls) files containing program point declarations. Be sure to include
all declaration files that are needed for the particular data trace file; the simplest way is to include
every declaration file created when instrumenting the program.

Not all Daikon front ends produce .decls files, since program point declarations may also appear
in .dtrace files. For instance, the Chicory front end for Java (see Section 7.1 [Chicory|, page 61)
produces only .dtrace files. If there are no .decls files, then it is not necessary to include them on
the command line to Daikon.

Note that combining input files from Chicory and (Java) DynComp can lead to a decl format error. The
preferred usage is to use the DynComp generated .decls file(s) as input to Chicory. See Section 3.1
[Detecting invariants in Java programs|, page 4 for more details.

e The spinfo-files are splitter info (.spinfo) files that enable detection of conditional invariants (see
Section 6.2 [Conditional invariants|, page 53); these are optional and may be created automatically or
by hand.

The files may appear in any order; the file type is determined by whether the file name contains .decls,
.dtrace, or .spinfo. As a special case, a file name of - means to read data trace information from
standard input.

The optional flags are described in the sections that follow. For further ways to control Daikon’s behavior
via configuration options, see Section 6.1 [Configuration options|, page 44; also see the list of options to
the front ends — such as DynComp (see Section 7.2.2 [DynComp for Java options], page 70), Chicory (see
Section 7.1.1 [Chicory options], page 61) or Kvasir (see Section 7.3.2 [Kvasir options|, page 74).

4.1 Options to control Daikon output

--help
Print usage message.

-o inv_file
Output serialized invariants to the specified file; they can later be postprocessed, compared, etc.
Default: basename.inv.gz in the current directory, where the first data trace file’s basename starts
with basename.dtrace. Default is no serialized output, if no such data trace file was supplied. If a
data trace file was supplied, there is currently no way to avoid creating a serialized invariant file.

--no_text_output
Don’t print invariants as text output. This option may be used in conjunction with the —o option.

--format name
Produce output in the given format. For a list of the output formats supported by Daikon, see
Section 5.1 [Invariant syntax|, page 18.

DRAFT 4 May 2020

Chapter 4: Running Daikon 14

--show_progress
--no_show_progress
Prints (respectively, suppresses) timing information as major portions of Daikon are executed.

—--noversion
Suppress the printing of version information

—--output_num_samples

Output numbers of values and samples for invariants and program points; this is a debugging flag.
(That is, it helps you understand why Daikon produced the output that it did.)

The ‘Samples breakdown’ output indicates how many samples in the .dtrace file had a modified
value (‘m’), had an unmodified value (‘v’), and had a nonsensical value (‘x’). The summary uses a
capital letter if the sample had any of the corresponding type of variable, and a lower-case letter if
it had none. These types affect statistical tests that determine whether a particular invariant (that
was true over all the test runs) is printed.

Only variables that appear in both the pre-state and the post-state (variables that are in scope at
both procedure exit and entry) are eligible to be listed as modified or unmodified. This is why the
list of all variables is not the union of the modified and unmodified variables.

-—files_from filename
Read a list of .decls, .dtrace, or .spinfo file names from the given text file, one filename per line,
as an alternative to providing the file names on the command line.

—--server dirname
Server mode for Daikon in which it reads files from dirname as they appear (sorted lexicographically)
until it finds a file ending in ‘.end’, at which point it calculates and outputs the invariants.

--omit_from_output [Ors]
Omit some potentially redundant information from the serialized output file produced with -o. By
default, the serialized output contains all of the data structures produced by Daikon while inferring
invariants. Depending on the use to which the serialized output will later be put, the file can
sometimes be significantly shortened by omitting information that is no longer needed. The flag
should be followed by one or more characters each representing a kind of structures the can be
omitted. The following characters are recognized:

0 (zero)
Omit information about program points that were declared, but for which no samples were
found in any .dtrace file.

r Omit reflexive invariants, those in which a variable appears more than once. Usually, such
invariants are not interesting, because their meaning is duplicated by invariants with fewer
variables: for instance, x = x - x and y = z + z can be expressed as x = 0 and y = 2 * z instead.
However, Daikon generates and uses such invariants internally to decide what invariants to
create when two previously equal variables turn out to be different.

s Omit invariants that are suppressed by other invariants. Suppression refers to a particular
optimization in which the processing of an invariant is postponed as long as certain other
invariants that logically imply it hold.

For most uses of serialized output in the current version, it is safe to use the 0 and r omissions, but
the s omission will cause subtle output changes. In many cases, the amount of space saved is modest
(typically around 10%), but the savings can be more substantial for programs with many unused
program points, or program points with many variables.

DRAFT 4 May 2020

Chapter 4: Running Daikon 15

4.2 Options to control invariant detection

-—conf_limit val
Set the confidence limit for justifying invariants. If the confidence level for a given invariant is larger
than the limit, then Daikon outputs the invariant. This mechanism filters out invariants that are
satisfied purely by chance. This is only relevant to invariants that were true in all observed samples;
Daikon never outputs invariants that were ever false.

val must be between 0 and 1; the default is .99. Larger values yield stronger filtering.

Each type of invariant has its own rules for determining confidence. See the computeConfidence
method in the Java source code for the invariant.

For example, consider the invariant a<b whose confidence computation is 1 = 1/2"numsamples, which
indicates the likelihood that the observations of a and b did not occur by chance. If there were 3
samples, and a<b on all of them, then the confidence would be 7/8 = .875. If there were 6 samples,
and a<b on only 5 on them, the confidence would be 0. If there were 9 samples, and a<b on all of
them, then the confidence would be 1-1/2°9 = .998.

There are two ways to print the confidence of each invariant. You can use Diff (see Section 8.1.3
[Invariant Diff], page 101):

java —-cp $DAIKONDIR/daikon.jar daikon.diff.Diff MyFile.inv.gz
or you can use PrintInvariants (see Section 8.1.1 [Printing invariants|, page 100):

java -cp $DAIKONDIR/daikon.jar daikon.PrintInvariants --dbg daikon.PrintInvariants.repr \
MyFile.inv.gz
To print the confidence of each invariant that is discarded, run Daikon with the -——disc_reason all
command-line option (see Section 4.5 [Daikon debugging options|, page 17).

--list_type classname
Indicate that the given class implements the java.util.List interface. The preferred mechanism
for indicating such information is the ListImplementors section of the .decls file. See Section
“ListImplementors declaration” in Daikon Developer Manual.

--user-defined-invariant classname
Use a user-defined invariant that not built into Daikon but is defined in the given class. The
classname should be in the fully-qualified format expected by Class.getName(), such as
“mypackage . subpackage.ClassName”, and its .class file should appear on the classpath.

--disable-all-invariants
Disable all known invariants: all those that are built into Daikon, and all those that have been
specified by —-user-defined-invariant so far. An invariant may be re-enabled after this option is
specified, see Section 6.1.1.2 [Options to enable/disable specific invariants], page 45.

--nohierarchy
Avoid connecting program points in a dataflow hierarchy. For example, Daikon normally connects
the :::ENTER program points of class methods with the class’s :::CLASS program point, so that
any invariant that holds on the :::CLASS program point is considered to hold true on the :::ENTER
program point. With no hierarchy, each program point is treated independently. This is for using
Daikon on applications that do not have a concept of hierarchy. It can also be useful when you wish
to process unmatched enter point samples from a trace file that is missing some exit point samples.

—--suppress_redundant
Suppress display of logically redundant invariants, using the Simplify automatic theorem prover.
Daikon already suppresses most logically redundant output (this can be controlled by invariant
filters; see Section 5.6 [Invariant filters|, page 42. For example, if ‘x >= 0’ and ‘x > 0’ are both

DRAFT 4 May 2020

https://docs.oracle.com/javase/8/docs/api/java/lang/Class.html#getName--

Chapter 4: Running Daikon 16

true, then Daikon outputs only ‘x > 0’. Use of the —-suppress_redundant option tells Daikon to
use Simplify to eliminate even more redundant output, and should be used if it is important that
absolutely no redundancies appear in the output.

The Simplify program must be installed in order to take advantage of this option (see Section 9.1.11.1
[Installing Simplify], page 115). Beware that Simplify can run slowly; the amount of effort Simplify
exerts for each invariant can be controlled using both the daikon.simplify.Session.simplify_
max_iterations and daikon.simplify.Session.simplify_timeout configuration options.

4.3 Processing only part of the trace file

--ppt-select-pattern=ppt_regexp
Only process program points whose names match the regular expression. The --ppt-omit-pattern
argument takes precedence over this argument.

--ppt-omit-pattern=ppt_regexp
Do not process program points whose names match the regular expression. This takes precedence
over the —-ppt-select-pattern argument.

--var-select-pattern=var_regexp
Only process variables (whether in the trace file or derived) whose names match the regular expres-
sion. The --var-omit-pattern argument takes precedence over this argument.

--var-omit-pattern=var_regexp
Ignore variables (whether in the trace file or derived) whose names match the regular expression.
This takes priority over the --var-select-pattern argument.

All of the regular expressions used by Daikon use Java’s regular expression syntax. Multiple items can
be matched by using the logical or operator (‘|’), for example varl|var2|var3. Java’s regular expression
syntax is similar to Perl’s but not exactly the same.

The ...-omit-pattern arguments take precedence: if a name matches an omit pattern, it is excluded. If a
name does not match an omit pattern, it is tested against the select pattern (if any). If any select patterns
are specified, the name must match one of the patterns in order to be included. If no select patterns are
specified, then any ‘ppt’ name that does not match the omit patterns is included.

Using --ppt-select-pattern and --ppt-omit-pattern can save time even if there are no samples for
the excluded program points, as Daikon can skip the declarations and need not initialize data structures
that would be used if samples were encountered.

Front ends such as Chicory (see Section 7.1.1.1 [Program points in Chicory output], page 62) and Kvasir
(see Section 7.3.2 [Kvasir options|, page 74), and other tools such as DynComp (see Section 7.2.2 [DynComp
for Java options|, page 70) and PrintInvariants (see Section 8.1.1 [Printing invariants|, page 100), also
support these command-line options (Kvasir names them slightly differently). Passing the command-line
option to the front end means that the target program will run faster and the trace file will be smaller.

4.4 Daikon configuration options

--config filename
Load the configuration settings specified in the given file. See Section 6.1 [Configuration options],
page 44, for details.

--config_option name=value
Specify a single configuration setting. See Section 6.1 [Configuration options|, page 44, for details.

DRAFT 4 May 2020

https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html#sum
https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html#jcc

Chapter 4: Running Daikon 17

4.5 Daikon debugging options

--dbg category

--debug
These debugging options cause output to be written to a log file (by default, to the terminal); in other
words, they enable a Logger. The --dbg category option enables debugging output (logging output)
for a specific part of Daikon; it may be specified multiple times, permitting fine-grained control over
debugging output. The --debug option turns on all debugging flags. (This produces a lot of output!)
Most categories are class or package names in the Daikon implementation, such as daikon.split
or daikon.derive.binary.SequencesJoin. Only classes that check the appropriate categories are
affected by the debug flags; you can determine this by looking for a call to Logger.getLogger in the
specific class.

—--track class<varl,var2,var3>Qppt
Turns on debugging information on the specified class, variables, and program point. In contrast
to the --dbg option, track logging follows a particular invariant through Daikon. Multiple --track
options can be specified. Each item (class, variables, and program point) is optional. Multiple
classes can be specified separated by vertical bars (‘|’). Matching is a simple substring (not a
regular expression) comparison. Each item must match in order for a printout to occur. For more
information, see Section “Track logging” in Daikon Developer Manual.

--disc_reason inv_class<varl,var2,...>Q@ppt
Prints all discarded invariants of class inv_class at the program point specified that involve exactly
the variables given, as well as a short reason and discard code explaining why they were not worthy
of print. Any of the three parts of the argument may be made a wildcard by excluding it. For
example, ‘inv_class’ and ‘<varl,var2,...>@ppt’ are valid arguments. Some concrete examples are
‘Implication<x,y>@foo():::EXIT’, ‘<x,y>@foo():::EXIT’, and ‘Implication<x,y>’. To print all
discarded invariants, use the argument ‘all’.

—-—-mem_stat
Prints memory usage statistics into a file named stat.out in the current directory.

DRAFT 4 May 2020

Chapter 5: Daikon output 18

5 Daikon output

Daikon outputs the invariants that it discovers in textual form to your terminal. This chapter describes
how to interpret those invariants — in other words, what do they mean?

Daikon also creates a .inv file that contains the invariants in serialized (binary) form. You can use the
.inv file to print the invariants (see Section 8.1.1 [Printing invariants|, page 100) in a variety of formats,
to insert the invariants in your source code (see Section 8.1.4 [Annotate|, page 102), to perform run-time
checking of the invariants (see Section 8.1.6 [Runtime-check instrumenter|, page 104, and Section 8.1.7
[InvariantChecker|, page 106), and to do various other operations. See Chapter 8 [Tools|, page 100, for
descriptions of such tools.

If you wish to write your own tools for processing invariants, you have two general options. You can
parse Daikon’s textual output, or you can write Java code that processes the .inv file. The .inv file is
simply a serialized PptMap object. In addition to reading the Javadoc, you can examine how the other
tools use this data structure.

5.1 Invariant syntax

Daikon can produce output in a variety of formats. Each of the format names can be specified as an ar-
gument to the -—-format argument of Daikon (see Section 4.1 [Options to control Daikon output|, page 13),
PrintInvariants (see Section 8.1.1 [Printing invariants|, page 100), and Annotate (see Section 8.1.4 [An-
notate|, page 102). When passed on the command line, the format names are case-insensitive: —-format
JML and --format jml have the same effect.

You can enhance Daikon to produce output in other formats. See Section “New formatting for invariants”
in Daikon Developer Manual.

Daikon format
Daikon’s default format is a mix of Java, mathematical logic, and some additional extensions. It is
intended to concisely convey meaning to programmers.

DBC format
This format produces output in the design-by-contract (DBC) format expected by Parasoft’s Jtest
tool (https://www.parasoft.com).

ESC/Java format

ESC format
The Extended Static Checker for Java (ESC/Java) is a programming tool for finding errors in Java
programs by checking annotations that are inserted in source code; for more details, see http://
www.hpl.hp.com/downloads/crl/jtk/. Daikon’s ESC/Java format (which can also be specified as
ESC format) is intended for use with the original ESC/Java tool. Use Daikon’s JML format for use
with the ESC/Java2 tool.

Java format
Write output as Java expressions. This means that each invariant is a valid Java expression, if
inserted at the correct program point: right after method entry, for method entry invariants; right
before method exit, for method exit invariants; or anywhere in the code, for object invariants.

There are two exceptions. Method exit invariants that refer to ‘pre-state’, such as ‘x == 01d(x)
+ 17, are output with the tag ‘\old’ surrounding the ‘pre-state’ expression (e.g. ‘x == \old(x)
+ 1. Method exit invariants that refer to the return value of the method, such as ‘return == x +
y’, are output with the tag ‘\result’ in place of the return value (e.g. ‘\result == x + y’). These
expression are obviously not valid Java code.

DRAFT 4 May 2020

http://plse.cs.washington.edu/daikon/download/api/daikon/PptMap.html
https://www.parasoft.com
http://www.hpl.hp.com/downloads/crl/jtk/
http://www.hpl.hp.com/downloads/crl/jtk/
http://kindsoftware.com/products/opensource/ESCJava2/

Chapter 5: Daikon output 19

JML format
Produces output in JVM (Java Modeling Language, http://www. jmlspecs.org); for details, see
the JML Manual. JML format lets you use the various JVM tools on Daikon invariants, including
run-time assertion checking and the ESC/Java2 tool.

Simplify format
Produces output in the format expected by the Simplify automated theorem prover; for details, see
the Simplify distribution.

CSharpContract format
Produces C+# output for use with Microsoft’s Code Contracts http://www.microsoft.com/en-us/
research/project /code-contracts/. The format employs some extension/utility methods to
improve contract readability; the library containing these methods can be found at https://github.
com/twschiller/daikon-code-contract-extensions.

5.2 Program points

A program point is a specific place in the source code, such as immediately before a particular line of
code. Daikon’s output is organized by program points.

For example, foo() : : :ENTER is the point at the entry to procedure foo(); the invariants at that point
are the preconditions for the foo () method, properties that are always true when the procedure is invoked.

Likewise, foo() :: :EXIT is the program point at the procedure exit, and invariants there are postcon-
ditions. When there are multiple exit points from a procedure (for instance, because of multiple return
statements), the different exits are differentiated by suffixing them with their line numbers; for instance,
StackAr.top() :: :EXIT79. The exit point lacking a line number (in this example, StackAr.top() : : :EXIT)
collects the postconditions that are true at every numbered exit point. This is an example of a program
point that represents a collection of locations in the program source rather than a single location. This
concept is represented in Daikon by the dataflow hierarchy, see Section “Dataflow hierarchy” in Daikon
Developer Manual.

The Java instrumenter Chicory selects names for program points that include an indication of the
argument and return types for each method. These signatures are presented in Class.getName format:
one character for each primitive type (‘B’ for byte, ‘C’ for character, ‘2’ for boolean, etc.); ‘Lclassname;’
for object types; and a ‘[’ prefix for each level of array nesting.

5.2.1 OBJECT and CLASS program points

Two program point tags that have special meaning to Daikon’s hierarchy organization are :::0BJECT
and :::CLASS. The :::0BJECT tag indicates object invariants (sometimes called representation invariants
or class invariants) over all the instance (member) fields and static fields of the class. These properties
always hold for any object of the given class, from the point of view of a client or user. These properties
hold at entry to and exit from every public method of the class (except not the entry to constructors, when
fields are not yet initialized).

The :::CLASS tag is just like : : : 0BJECT, but only for static variables, which have only one value for all
objects. Static fields and instance fields are often used for different purposes. Daikon’s separation of the
two types of fields permits programmers to see the properties over the static fields without knowing which
are the static fields and pick them out of the :::0BJECT program point.

(By contrast, ESC/Java and JML make class invariants hold even at the entry and exit of private methods.
Their designers believe that most private methods preserve the class invariant and are called only when
the class invariant holds. ESC/Java and JML require an explicit helper annotation to indicate a private
method for which the class invariant does not hold.)

DRAFT 4 May 2020

http://www.jmlspecs.org
http://www.eecs.ucf.edu/~leavens/JML/documentation.shtml
http://kindsoftware.com/products/opensource/ESCJava2/
http://www.hpl.hp.com/downloads/crl/jtk/
http://www.microsoft.com/en-us/research/project/code-contracts/
http://www.microsoft.com/en-us/research/project/code-contracts/
https://github.com/twschiller/daikon-code-contract-extensions
https://github.com/twschiller/daikon-code-contract-extensions

Chapter 5: Daikon output 20

A trace file does not contain samples for the :::0BJECT and :::CLASS program points. Variable values
for these artificial program points are constructed from samples that do appear in a trace file. For example,
an object invariant is a property that holds at entry to and exit from every public method of the class, so
the :::0BJECT program point is constructed from samples at those points.

5.3 Variable names

A front end produces a trace file that associates trace variable names with values. Trace variable names
need not be exactly the same as the variables in the program. The trace may contain values that are not
held in any program variables; in this case, the front end must make up a name to express that value (see
below for examples).

Daikon ignores variable names when inferring invariants; it uses the names only when performing output.
(Thus, the only practical restriction on trace names is that the VarInfoName parse method must be able
to parse the name.)

By convention, trace variables are similar to program variables and field accesses. For example, w and
x.y.z are legal trace variables. (So are ‘a[i]’, and ‘a[0] .next’, but these are usually handled as derived
variables instead; see below.) As in languages such as Java and C, a period character represents field access
and square brackets represent selecting an element of a sequence.

In addition to variables that appear in the trace file, Daikon creates additional variables, called derived
variables, by combining trace variables. For example, for any array a and integer i, Daikon creates a
derived variable a[i]. This is not a variable in the program (and this expression might not even appear in
the source code), but it may still be useful to compute invariants over this expression. For a list of derived
variables and how to control Daikon’s use of them, see Section 6.1.1.4 [Options to enable/disable derived
variables|, page 46.

Some trace variables and derived variables may represent meaningless expressions; in such a circumstance,
the value is said to be nonsensical (see Section “Nonsensical values” in Daikon Developer Manual).

The remainder of this section describes conventions for naming expressions. Those that cannot be named
by simple C/Java expressions are primarily related to arrays and sequences. (In part, these special expres-
sions are necessary because Daikon can only handle variables of scalar (integer, floating-point, boolean,
String) and array-of-scalar types. Daikon cannot handle structs, classes, or multidimensional arrays or
structures, but such data structures can be represented as scalars and arrays by choosing variable names
that indicate their relationship.)

e ali] array access. a and i are themselves arbitrary variable names, of array and integral type,
respectively.

e a[-1] from-end array access. al[-1] denotes the last element of array a; it is syntactic sugar for
ala.length-1].

e a[] array contents. For array-valued expression a, all of its elements, as a sequence. Simply using the
expression a means the identity (address or hashcode) of the array, not a list of its elements. For two
arrays a and b, ‘a=b’ implies ‘a[]=b[]’, but ‘a[l=b[]’ does not imply ‘a=b’.

e x.y, x->y field access. When field access is applied to a structure/class, it has the usual meaning of
selecting one field from the structure/class.

When field access is applied to an array, it means to map the field access across the elements of the
array. For example, if a is an array, then a[].foo is the sequence consisting of the foo fields of each
of the elements of a. Likewise, a[].foo.bar contains the bar fields of a[].foo. By contrast, a.foo
does not make sense, because one cannot ask for the foo field of an address, and a[] .foo[] would be
a two-dimensional array.

e Asin Java, x.getClass() is the run-time type of x, which may differ from its declared type.

DRAFT 4 May 2020

Chapter 5: Daikon output 21

e a.length is the length (number of elements) of array a; this is not necessarily the number of initialized
or used elements.

e s.toString is the string value of String s, namely a sequence of characters.

e Classname.varname static class variable. Static variables of a class have names of the form
‘classname.varname’

e orig(x) refers to the value of variable x upon entry to a procedure (because the procedure body might
modify the value of x). These variables appear only at :::EXIT program points. Typically, orig()
variables do not appear in the trace, but are automatically created by Daikon when it matches up
:::ENTER and :::EXITnn program points. See Section 5.3.1 [orig variable example|, page 22.

This variable prints as orig when using Daikon output format (see Section 5.1 [Invariant syntax],
page 18), but may print differently in other formats (such as \old).

e post(x) refers to the value of variable x upon exit from a procedure. Such a value is usually written
simply x; the post prefix is needed only within an orig expression, when the post-state value needs
to be referenced. Just as orig may be used only in a post-state context and specifies an expression
to be evaluated in the ‘pre-state’, post may be used only in a ‘pre-state’ context and specifies an
expression to be evaluated in the post-state. See Section 5.3.1 [orig variable example], page 22.

e /globalVar C global variable. In C output, global variables with external linkage are prefixed with a
slash. For instance, global /x is distinct from procedure parameter /x. (In Java programs, variables
can be distinguished by prefixing them with this. or, for class-static variables, a class name.)

e myfile_c/staticVar C static variable. In C output, file-static variables have names of the form
‘filename/varname’, where periods (‘.’) in the filename are converted into underscores (‘_’). For
example, ‘Global_c/x’ is the name for a file-static variable x declared in the file Global.c).

e myfile_c@funcname/funcStaticVar C function-scoped static variable. In C output, for
static variables which are declared within functions, an at-sign ‘@ separates the filename and
the function name and then a slash separates the function name and variable name (e.g.,
‘Global_c@main/funcStaticVar’ for a static variable funcStaticVar declared within the function
main in the file Global.c).

Daikon’s current front ends do not produce output for local variables, only for variables visible from
outside a procedure. (Also see the ——std-visibility option to Chicory, Section 7.1.1 [Chicory options],
page 61.) More generally, Daikon’s front ends produce output at procedure exit and entry, not within
the procedure. Thus, Daikon’s output forms a specification from the view of a client of a procedure. If
you wish to compute invariants over local variables, you can extend one of Daikon’s front ends (or request
us to do so). An alternative that permits computing invariants at arbitrary locations is to call a dummy
procedure, passing all the variables of interest. The dummy procedure’s pre and postconditions will be
identical and will represent the invariants at the point of call.

The array introduction operator [] can made Daikon variables look slightly odd, but it is intended to
assist in interpreting the variables and to provide an indication that the variable name cannot be substituted
directly in a program as an expression.

Each array introduction operator [] increases the dimensionality of the variable, and each array indexing
operation [i] decreases it. Since all Daikon variables are scalars or one-dimensional arrays, these operators
must be matched up, or have at most one more [] than [i]. (There is one exception: according to a
strict interpretation of the rules, the C/Java expression a[i] would turn into the Daikon variable a[] [i],
since it does not change the dimensionality of any expression it appears in. However, that would be even
more confusing, and the point is to avoid confusion, so by convention Daikon front ends use just a[i], not
a[] [i]. Strictly speaking, none of the [] operators is necessary, since a user with a perfect knowledge of
the type of each program variable and field could use that to infer the type of any Daikon expression.)

DRAFT 4 May 2020

Chapter 5: Daikon output 22

5.3.1 orig() variable example
This section gives an example of use of orig() and post() variables and arrays.
Suppose you have initially that (in Java syntax)
int i = 0;
int[] a = new int[] { 22, 23 };
int[] b = new int[] { 46, 47 };

and then you run the following:

// pre-state values at this point

al[0] = 24;
al1] = 25
a =b;
al0] = 48;
al1] = 49;
i=1;

// post-state values at this point
The values of various variables are as follows:

orig(ali]) = 22
The value of al[i] in the ‘pre-state’: {22, 23}|0]

orig(all) [orig(i)] = 22
This is the same as orig(a[i]): {22, 23}[0].

orig(all) [i] = 23
The value of a[] in the ‘pre-state’ (which is an array object, not a reference), indexed by the
post-state value of i: {22, 23}[1]

orig(a) [orig(i)] =24
orig(a) is the original value of the reference a, not a’s original elements: {24, 25}[0]

orig(a) [i] =25
The original pointer value of a, indexed by the post-state value of i: {24, 25}[1]

alorig(i)] =48

In the post-state, a indexed by the original value of i: {48, 49}[0]
ali] =49

The value of a[i] in the post-state.

b = orig(b) = some hashcode
The identity of the array b has not changed.

b[] = [48, 49]
orig(b[]) = [46, 47]
For an array b, ‘b=orig(b)’ does not imply ‘b[J=orig(b[]1)’.

orig(alpost(i)]) =23
The ‘pre-state’ value of a[1] (because the post-state value of i is 1): {22, 23}[1]

5.4 Interpreting Daikon output

If nothing gets printed before the ‘Exiting’ line, then Daikon found no invariants. You can get a little
bit more information by using the --output_num_samples flag to Daikon (see Section 4.1 [Options to
control Daikon output], page 13).

DRAFT 4 May 2020

Chapter 5: Daikon output 23

Daikon’s output is predicated on the assumption that all expressions that get evaluated are sensible. For
instance, if Daikon prints ‘a.b == 0’, then that means that if ‘a.b’ is sensible (that is, ‘a’ is non-null), then
its value is zero. When ‘a’ is ‘null’, then ‘a.b’ is called nonsensical. Daikon’s output ignores all nonsensical
values. If you would like the assumptions to be printed explicitly, then set the daikon.Daikon.guardNulls
configuration option (see Section 6.1.1.8 [General configuration options|, page 49).

5.4.1 Redundant invariants

By default, Daikon does not display redundant invariants — those that are implied by other invariants
in the output — because such results would merely clutter the output without adding any valuable infor-
mation. For instance, if Daikon reports ‘x==y’, then it never also reports ‘x-1==y-1’. You can control this
behavior to some extent by disabling invariant filters; see Section 5.6 [Invariant filters|, page 42. (You can
also print all invariants, even redundant ones, by saving the invariants to a .inv file and then using the
PrintInvariants (see Section 8.1.1 [Printing invariants|, page 100) or Diff (see Section 8.1.3 [Invariant

Diff], page 101) programs to print the results.)

5.4.2 Equal variables

If two variables x and y are equal, then any invariant about x is also true about y. Daikon chooses one
variable (the leader) from the set of equal variables, and only prints invariants over the leader.

Suppose that a =b = ¢. Then Daikon will print a = b and a = ¢, but not b = c. Furthermore, Daikon
might print a > d, but would not print b > d or ¢ > d.

You can control which variables are in an equality set; see Section “Variable comparability” in Daikon
Developer Manual.

5.4.3 Has only one value variables

The output ‘var has only one value’ in Daikon’s output means that every time that variable var was
encountered, it had the same value. Daikon ordinarily reports the actual value, as in ‘var == 22’. Typically,
the “has only one value” output means that the variable is a hashcode or address — that is, its declared
type is ‘hashcode’ (see Section “Variable declarations” in Daikon Developer Manual). For example, ‘var
== 0x38E8A’ is not very illuminating, but it is still interesting that var was never rebound to a different
object.

Note that ‘var has only one value’ is different from saying that var is unmodified.

A variable might have only one value but not be reported as unmodified because the variable is not
a parameter to a procedure — for instance, if a routine always returns the same object, or in a class
invariant. A variable can be reported as unmodified but not have only one value because the variable is
never modified during any execution of the procedure, but has different values on different invocations of
the procedure.

5.4.4 Object inequality

Daikon may report ‘x < y’ where the operator ‘<’ is not applicable to the type of ‘x’ and ‘y’, as in
‘myString < otherString’.

In this case, the invariant means that the first expression is always less than the second, according to
the ‘Comparable.compareTo’ method.

5.5 Invariant list

The following is a list of all of the invariants that Daikon detects. Each invariant has a configuration
enable switch. By default most invariants are enabled. Any that are not enabled by default are indicated
below. Some invariants also have additional configuration switches that control their behavior. These are
indicated below as well. See Section 6.1.1.2 [Options to enable/disable specific invariants|, page 45.

DRAFT 4 May 2020

Chapter 5: Daikon output 24

AndJoiner
This is a special invariant used internally by Daikon to represent an antecedent invariant in an
implication where that antecedent consists of two invariants anded together.

CommonFloatSequence
Represents sequences of double values that contain a common subset. Prints as {el1, e2, €3, ...}
subset of x[].

This invariant is not enabled by default. See the configuration option ‘daikon.inv.unary.sequence.CommonFlo:
See also the following configuration option:
e ‘daikon.inv.unary.sequence.CommonFloatSequence.hashcode_seqs’
CommonSequence

Represents sequences of long values that contain a common subset. Prints as {el, €2, €3, ...}
subset of x[].

This invariant is not enabled by default. See the configuration option ‘daikon.inv.unary.sequence.CommonSeqt
See also the following configuration option:
e ‘daikon.inv.unary.sequence.CommonSequence.hashcode_seqs’

CommonStringSequence

Represents string sequences that contain a common subset. Prints as {s1, s2, s3, ...} subset of

x[].

This invariant is not enabled by default. See the configuration option ‘daikon.inv.unary.stringsequence.Comr
CompleteOneOfScalar

Tracks every unique value and how many times it occurs. Prints as x has values: vi v2 v3
This invariant is not enabled by default. See the configuration option ‘daikon.inv.unary.scalar.CompleteOnel

CompleteOneOfString
Tracks every unique value and how many times it occurs. Prints as either x has no values or as x
has values: "v1" "v2" "v3"

This invariant is not enabled by default. See the configuration option ‘daikon.inv.unary.string.CompleteOnel

DummyInvariant
This is a special invariant used internally by Daikon to represent invariants whose meaning Daikon
doesn’t understand. The only operation that can be performed on a Dummylnvariant is to print it.
In particular, the invariant cannot be tested against a sample: the invariant is always assumed to
hold and is always considered to be statistically justified.
The main use for a dummy invariant is to represent a splitting condition that appears in a .spinfo
file. The .spinfo file can indicate an arbitrary Java expression, which might not be equivalent to
any invariant in Daikon’s grammar.
Ordinarily, Daikon uses splitting conditions to split data, then seeks to use that split data to form
conditional invariants out of its standard built-in invariants. If you wish the expression in the
.spinfo file to be printed as an invariant, whether or not it is itself discovered by Daikon during
invariant detection, then the configuration option daikon.split.PptSplitter.dummy_invariant_
level must be set, and formatting information must be supplied in the splitter info file.

EltLowerBound
Represents the invariant that each element of a sequence of long values is greater than or equal to a
constant. Prints as x[] elements >= c.

See also the following configuration options:
e ‘daikon.inv.unary.sequence.EltLowerBound.minimal_interesting’

DRAFT 4 May 2020

Chapter 5: Daikon output 25

e ‘daikon.inv.unary.sequence.EltLowerBound.maximal_interesting’

EltLowerBoundFloat
Represents the invariant that each element of a sequence of double values is greater than or equal to
a constant. Prints as x[] elements >= c.

See also the following configuration options:
e ‘daikon.inv.unary.sequence.EltLowerBoundFloat.minimal_interesting’
e ‘daikon.inv.unary.sequence.EltLowerBoundFloat.maximal_interesting’
EltNonZero

Represents the invariant "x != 0" where x represents all of the elements of a sequence of long. Prints
as x[] elements != 0.

EltNonZeroFloat
Represents the invariant "x != 0" where x represents all of the elements of a sequence of double.
Prints as x[] elements != 0.

EltOneOf
Represents sequences of long values where the elements of the sequence take on only a few distinct
values. Prints as either x[] == ¢ (when there is only one value), or as x[] one of {c1, c2, c3}

(when there are multiple values).
See also the following configuration options:
e ‘daikon.inv.unary.sequence.EltOne0f.size’
e ‘daikon.inv.unary.sequence.EltOne0f.omit_hashcode_values_Simplify’

EltOneOfFloat
Represents sequences of double values where the elements of the sequence take on only a few distinct
values. Prints as either x[] == ¢ (when there is only one value), or as x[] one of {c1, c2, c3}

(when there are multiple values).
See also the following configuration option:
e ‘daikon.inv.unary.sequence.El1tOneOfFloat.size’

EltOneOfString
Represents sequences of String values where the elements of the sequence take on only a few distinct
values. Prints as either x[] == ¢ (when there is only one value), or as x[] one of {c1, c2, c3}

(when there are multiple values).
See also the following configuration option:
e ‘daikon.inv.unary.stringsequence.El1tOne0OfString.size’
EltRangeFloat. EqualMinusOne

Internal invariant representing double scalars that are equal to minus one. Used for non-instantiating
suppressions. Will never print since OneOf accomplishes the same thing.

EltRangeFloat.EqualOne
Internal invariant representing double scalars that are equal to one. Used for non-instantiating
suppressions. Will never print since OneOf accomplishes the same thing.

EltRangeFloat.EqualZero
Internal invariant representing double scalars that are equal to zero. Used for non-instantiating
suppressions. Will never print since OneOf accomplishes the same thing.

EltRangeFloat.GreaterEqual64
Internal invariant representing double scalars that are greater than or equal to 64. Used for non-
instantiating suppressions. Will never print since Bound accomplishes the same thing.

DRAFT 4 May 2020

Chapter 5: Daikon output 26

EltRangeFloat.GreaterEqualZero
Internal invariant representing double scalars that are greater than or equal to 0. Used for non-
instantiating suppressions. Will never print since Bound accomplishes the same thing.

EltRangelnt.BooleanVal
Internal invariant representing longs whose values are always 0 or 1. Used for non-instantiating
suppressions. Will never print since OneOf accomplishes the same thing.

EltRangelnt.Bound0-63
Internal invariant representing longs whose values are between 0 and 63. Used for non-instantiating
suppressions. Will never print since Bound accomplishes the same thing.

EltRangelnt.EqualMinusOne
Internal invariant representing long scalars that are equal to minus one. Used for non-instantiating
suppressions. Will never print since OneOf accomplishes the same thing.

EltRangelnt.EqualOne
Internal invariant representing long scalars that are equal to one. Used for non-instantiating sup-
pressions. Will never print since OneOf accomplishes the same thing.

EltRangelnt.EqualZero
Internal invariant representing long scalars that are equal to zero. Used for non-instantiating sup-
pressions. Will never print since OneOf accomplishes the same thing.

EltRangelnt.Even
Invariant representing longs whose values are always even. Used for non-instantiating suppressions.
Since this is not covered by the Bound or OneOf invariants it is printed. Prints as x is even.

This invariant is not enabled by default. See the configuration option ‘daikon.inv.unary.sequence.EltRangelr
EltRangelnt.GreaterEqual64

Internal invariant representing long scalars that are greater than or equal to 64. Used for non-
instantiating suppressions. Will never print since Bound accomplishes the same thing.

EltRangelnt.GreaterEqualZero
Internal invariant representing long scalars that are greater than or equal to 0. Used for non-
instantiating suppressions. Will never print since Bound accomplishes the same thing.

EltRangelnt.PowerOfT'wo
Invariant representing longs whose values are always a power of 2 (exactly one bit is set). Used
for non-instantiating suppressions. Since this is not covered by the Bound or OneOf invariants it is
printed. Prints as x is a power of 2.

EltUpperBound
Represents the invariant that each element of a sequence of long values is less than or equal to a
constant. Prints as x[] elements <= c.

See also the following configuration options:
e ‘daikon.inv.unary.sequence.EltUpperBound.minimal_interesting’
e ‘daikon.inv.unary.sequence.EltUpperBound.maximal_interesting’
EltUpperBoundFloat

Represents the invariant that each element of a sequence of double values is less than or equal to a
constant. Prints as x[] elements <= c.

See also the following configuration options:
e ‘daikon.inv.unary.sequence.EltUpperBoundFloat.minimal_interesting’
e ‘daikon.inv.unary.sequence.EltUpperBoundFloat.maximal_interesting’

DRAFT 4 May 2020

Chapter 5: Daikon output 27

EltwiseFloatEqual
Represents equality between adjacent elements (x[i], x[i+1]) of a double sequence. Prints as x[]
elements are equal.

EltwiseFloat GreaterEqual
Represents the invariant >= between adjacent elements (x[i], x[i+1]) of a double sequence. Prints as
x[] sorted by >=.

EltwiseFloatGreaterThan
Represents the invariant > between adjacent elements (x[i], x[i+1]) of a double sequence. Prints as
x[] sorted by >.

EltwiseFloatLessEqual
Represents the invariant <= between adjacent elements (x[i], x[i+1]) of a double sequence. Prints as
x[] sorted by <=.

EltwiseFloatLessThan
Represents the invariant < between adjacent elements (x[i], x[i+1]) of a double sequence. Prints as
x[] sorted by <.

EltwiselntEqual
Represents equality between adjacent elements (x[i], x[i+1]) of a long sequence. Prints as x[]
elements are equal.

EltwiselntGreaterEqual
Represents the invariant >= between adjacent elements (x[i], x[i+1]) of a long sequence. Prints as
x[] sorted by >=.

EltwiseIntGreaterThan
Represents the invariant > between adjacent elements (x[i], x[i+1]) of a long sequence. Prints as x[]
sorted by >.

EltwiselntLessEqual
Represents the invariant <= between adjacent elements (x[i], x[i+1]) of a long sequence. Prints as
x[] sorted by <=.

EltwiseIntLessThan
Represents the invariant < between adjacent elements (x[i], x[i+1]) of a long sequence. Prints as x[]
sorted by <.

Equality
Keeps track of sets of variables that are equal. Other invariants are instantiated for only one member
of the Equality set, the leader. If variables x, y, and z are members of the Equality set and x is
chosen as the leader, then the Equality will internally convert into binary comparison invariants that
print as x == y and x == z.

FloatEqual
Represents an invariant of == between two double scalars. Prints as x == y.

FloatGreaterEqual
Represents an invariant of >= between two double scalars. Prints as x >=y.

FloatGreaterThan
Represents an invariant of > between two double scalars. Prints as x > y.

FloatLessEqual
Represents an invariant of <= between two double scalars. Prints as x <= y.

DRAFT 4 May 2020

Chapter 5: Daikon output 28

FloatLessThan
Represents an invariant of < between two double scalars. Prints as x < y.

FloatNonEqual
Represents an invariant of !|= between two double scalars. Prints as x !=y.

FunctionBinary.BitwiseAndLong_{xyz, yxz, zxy}
Represents the invariant x = BitwiseAnd(y, z) over three long scalars. Since the function is sym-
metric, only the permutations xyz, yxz, and zxy are checked.

FunctionBinary.BitwiseOrLong_{xyz, yxz, zxy}
Represents the invariant x = BitwiseOr(y, z) over three long scalars. Since the function is sym-
metric, only the permutations xyz, yxz, and zxy are checked.

FunctionBinary.BitwiseXorLong_{xyz, yxz, zxy}
Represents the invariant x = BitwiseXor(y, z) over three long scalars. Since the function is sym-
metric, only the permutations xyz, yxz, and zxy are checked.

FunctionBinary.DivisionLong_{xyz, xzy, yxz, yzx, zxy, zZyx}
Represents the invariant x = Division(y, z) over three long scalars. Since the function is non-
symmetric, all six permutations of the variables are checked.

FunctionBinary.GedLong_{xyz, yxz, zxy}
Represents the invariant x = Ged(y, z) over three long scalars. Since the function is symmetric, only
the permutations xyz, yxz, and zxy are checked.

FunctionBinary.Logical AndLong_{xyz, yxz, zxy}
Represents the invariant x = LogicalAnd(y, z) over three long scalars. For logical operations,
Daikon treats 0 as false and all other values as true. Since the function is symmetric, only the
permutations xyz, yxz, and zxy are checked.

FunctionBinary.LogicalOrLong_{xyz, yxz, zxy}
Represents the invariant x = LogicalOr(y, z) over three long scalars. For logical operations, Daikon
treats 0 as false and all other values as true. Since the function is symmetric, only the permutations
xyz, yxz, and zxy are checked.

FunctionBinary.LogicalXorLong_{xyz, yxz, zxy}
Represents the invariant x = LogicalXor(y, z) over three long scalars. For logical operations,
Daikon treats 0 as false and all other values as true. Since the function is symmetric, only the
permutations xyz, yxz, and zxy are checked.

FunctionBinary.LshiftLong_{xyz, xzy, yxz, yzx, zxy, zyX}
Represents the invariant x = Lshift(y, z) over three long scalars. Since the function is non-
symmetric, all six permutations of the variables are checked.

FunctionBinary.MaximumLong_{xyz, yxz, zxy}
Represents the invariant x = Maximum(y, z) over three long scalars. Since the function is symmetric,
only the permutations xyz, yxz, and zxy are checked.

FunctionBinary.MinimumLong_{xyz, yxz, zxy}
Represents the invariant x = Minimum(y, z) over three long scalars. Since the function is symmetric,
only the permutations xyz, yxz, and zxy are checked.

FunctionBinary.ModLong_{xyz, xzy, yxz, yzx, zxy, zyx}
Represents the invariant x = Mod (y, z) over three long scalars. Since the function is non-symmetric,
all six permutations of the variables are checked.

DRAFT 4 May 2020

Chapter 5: Daikon output 29

FunctionBinary.MultiplyLong_{xyz, yxz, zxy}
Represents the invariant x = Multiply (y, z) over three long scalars. Since the function is symmetric,
only the permutations xyz, yxz, and zxy are checked.

FunctionBinary.PowerLong_{xyz, xzy, yxz, yzx, zxy, zyx}
Represents the invariant x = Power(y, z) over three long scalars. Since the function is
non-symmetric, all six permutations of the variables are checked.

FunctionBinary.RshiftSignedLong_{xyz, xzy, yxz, yzx, zxy, zyx}
Represents the invariant x = RshiftSigned(y, z) over three long scalars. Since the function is
non-symmetric, all six permutations of the variables are checked.

FunctionBinary.RshiftUnsignedLong_{xyz, xzy, yxz, yzx, zxy, zyX}
Represents the invariant x = RshiftUnsigned(y, z) over three long scalars. Since the function is
non-symmetric, all six permutations of the variables are checked.

FunctionBinaryFloat.DivisionDouble_{xyz, xzy, yxz, yzx, zxy, zyX}
Represents the invariant x = Division(y, z) over three double scalars. Since the function is non-
symmetric, all six permutations of the variables are checked.

FunctionBinaryFloat.MaximumDouble_{xyz, yxz, zxy}
Represents the invariant x = Maximum(y, z) over three double scalars. Since the function is sym-
metric, only the permutations xyz, yxz, and zxy are checked.

FunctionBinaryFloat.MinimumDouble_{xyz, yxz, zxy}
Represents the invariant x = Minimum(y, z) over three double scalars. Since the function is sym-
metric, only the permutations xyz, yxz, and zxy are checked.

FunctionBinaryFloat.MultiplyDouble_{xyz, yxz, zxy}
Represents the invariant x = Multiply(y, z) over three double scalars. Since the function is sym-
metric, only the permutations xyz, yxz, and zxy are checked.

Guardinglmplication
This is a special implication invariant that guards any invariants that are over variables that are
sometimes missing. For example, if the invariant a.x = 0 is true, the guarded implication is a !'=
null =>a.x = 0.

Implication
The Implication invariant class is used internally within Daikon to handle invariants that are only
true when certain other conditions are also true (splitting).

IntEqual

Represents an invariant of == between two long scalars. Prints as x == y.
IntGreaterEqual

Represents an invariant of >= between two long scalars. Prints as x >=y.
IntGreaterThan

Represents an invariant of > between two long scalars. Prints as x > y.
IntLessEqual

Represents an invariant of <= between two long scalars. Prints as x <= y.
IntLessThan

Represents an invariant of < between two long scalars. Prints as x < y.
IntNonEqual

Represents an invariant of !|= between two long scalars. Prints as x !=y.
See also the following configuration option:

DRAFT 4 May 2020

Chapter 5: Daikon output 30

e ‘daikon.inv.binary.twoScalar.IntNonEqual.integral_only’

IsPointer
IsPointer is an invariant that heuristically determines whether an integer represents a pointer (a
32-bit memory address). Since both a 32-bit integer and an address have the same representation,
sometimes a a pointer can be mistaken for an integer. When this happens, several scalar invariants
are computed for integer variables. Most of them would not make any sense for pointers. Determining
whether a 32-bit variable is a pointer can thus spare the computation of many irrelevant invariants.

The basic approach is to discard the invariant if any values that are not valid pointers are encountered.
By default values between -100,000 and 100,000 (except 0) are considered to be invalid pointers. This
approach has been experimentally confirmed on Windows x86 executables.

This invariant is not enabled by default. See the configuration option ‘daikon.inv.unary.scalar.IsPointer.er
LinearBinary

Represents a Linear invariant between two long scalars x and y, of the form ax + by + ¢ = 0. The
constants a, b and ¢ are mutually relatively prime, and the constant a is always positive.

LinearBinaryFloat
Represents a Linear invariant between two double scalars x and y, of the form ax + by + ¢ = 0. The
constants a, b and c are mutually relatively prime, and the constant a is always positive.

LinearTernary
Represents a Linear invariant over three long scalars x, y, and z, of the form ax + by + cz + d = 0.
The constants a, b, c, and d are mutually relatively prime, and the constant a is always positive.

LinearTernaryFloat
Represents a Linear invariant over three double scalars x, y, and z, of the form ax + by + cz +d =
0. The constants a, b, ¢, and d are mutually relatively prime, and the constant a is always positive.

LowerBound
Represents the invariant x >= ¢, where c is a constant and x is a long scalar.
See also the following configuration options:
e ‘daikon.inv.unary.scalar.LowerBound.minimal_interesting’
e ‘daikon.inv.unary.scalar.LowerBound.maximal_interesting’
LowerBoundFloat
Represents the invariant x >= ¢, where ¢ is a constant and x is a double scalar.
See also the following configuration options:
e ‘daikon.inv.unary.scalar.LowerBoundFloat.minimal_interesting’
e ‘daikon.inv.unary.scalar.LowerBoundFloat.maximal_interesting’
Member

Represents long scalars that are always members of a sequence of long values. Prints as x in y[]
where x is a long scalar and y[] is a sequence of long.

MemberFloat
Represents double scalars that are always members of a sequence of double values. Prints as x in
y [] where x is a double scalar and y[] is a sequence of double.

MemberString
Represents String scalars that are always members of a sequence of String values. Prints as x in y[]
where x is a String scalar and y[] is a sequence of String.

DRAFT 4 May 2020

Chapter 5: Daikon output 31

Modulus
Represents the invariant x == r (mod m) where x is a long scalar variable, r is the (constant) remain-
der, and m is the (constant) modulus.

This invariant is not enabled by default. See the configuration option ‘daikon.inv.unary.scalar.Modulus.enal
NoDuplicates

Represents sequences of long that contain no duplicate elements. Prints as x[] contains no
duplicates.

This invariant is not enabled by default. See the configuration option ‘daikon.inv.unary.sequence.NoDuplicat
NoDuplicatesFloat

Represents sequences of double that contain no duplicate elements. Prints as x[] contains no
duplicates.

This invariant is not enabled by default. See the configuration option ‘daikon.inv.unary.sequence.NoDuplicat
NonModulus
Represents long scalars that are never equal to r (mod m) where all other numbers in the same range

(i.e., all the values that x doesn’t take from min(x) to max(x)) are equal to r (mod m). Prints as x
I=r (mod m), where r is the remainder and m is the modulus.

This invariant is not enabled by default. See the configuration option ‘daikon.inv.unary.scalar.NonModulus.:¢

NonZero
Represents long scalars that are non-zero. Prints as x !'= 0, or as x != null for pointer types.

NonZeroFloat
Represents double scalars that are non-zero. Prints as x !'= 0.

NumericFloat.Divides
Represents the divides without remainder invariant between two double scalars. Prints as x % y ==
0.

NumericFloat.Square
Represents the square invariant between two double scalars. Prints as x = y**2.

NumericFloat.ZeroTrack
Represents the zero tracks invariant between two double scalars; that is, when x is zero, y is also
zero. Prints as x =0 =>y = 0.

This invariant is not enabled by default. See the configuration option ‘daikon.inv.binary.twoScalar.Numericl
Numericlnt.BitwiseAndZero

Represents the BitwiseAnd == 0 invariant between two long scalars; that is, x and y have no bits
in common. Prints as x & y ==

This invariant is not enabled by default. See the configuration option ‘daikon.inv.binary.twoScalar.Numeric!
NumericInt.BitwiseComplement

Represents the bitwise complement invariant between two long scalars. Prints as x = ~y.

This invariant is not enabled by default. See the configuration option ‘daikon.inv.binary.twoScalar.Numeric!
Numericlnt.BitwiseSubset

Represents the bitwise subset invariant between two long scalars; that is, the bits of y are a subset
of the bits of x. Prints as x =y | x.

This invariant is not enabled by default. See the configuration option ‘daikon.inv.binary.twoScalar.Numeric!

NumericInt.Divides
Represents the divides without remainder invariant between two long scalars. Prints as x % y == 0.

DRAFT 4 May 2020

Chapter 5: Daikon output 32

Numericlnt.ShiftZero
Represents the ShiftZero invariant between two long scalars; that is, x right-shifted by y is always
zero. Prints as x >> y = 0.

This invariant is not enabled by default. See the configuration option ‘daikon.inv.binary.twoScalar.Numeric!

Numericlnt.Square
Represents the square invariant between two long scalars. Prints as x = y**2.

NumericInt.ZeroTrack
Represents the zero tracks invariant between two long scalars; that is, when x is zero, y is also zero.
Prints as x = 0 =>y = 0.

This invariant is not enabled by default. See the configuration option ‘daikon.inv.binary.twoScalar.Numeric!
OneOfFloat

Represents double variables that take on only a few distinct values. Prints as either x == ¢ (when
there is only one value) or as x one of {c1, c2, c¢3} (when there are multiple values).

See also the following configuration option:
e ‘daikon.inv.unary.scalar.One0fFloat.size’

OneOfFloatSequence
Represents double[] variables that take on only a few distinct values. Prints as either x == ¢ (when
there is only one value) or as x one of {c1, c2, c3} (when there are multiple values).
See also the following configuration option:
e ‘daikon.inv.unary.sequence.One0OfFloatSequence.size’
OneOfScalar
Represents long scalars that take on only a few distinct values. Prints as either x == ¢ (when there is

only one value), x one of {c1, c2, c¢3} (when there are multiple values), or x has only one value
(when x is a hashcode (pointer) — this is because the numerical value of the hashcode (pointer) is
uninteresting).

See also the following configuration options:
e ‘daikon.inv.unary.scalar.0OneOfScalar.size’
e ‘daikon.inv.unary.scalar.OneOfScalar.omit_hashcode_values_Simplify’
OneOfSequence

Represents long|] variables that take on only a few distinct values. Prints as either x == ¢ (when
there is only one value) or as x one of {c1, c2, c3} (when there are multiple values).

See also the following configuration options:
e ‘daikon.inv.unary.sequence.One0OfSequence.size’
e ‘daikon.inv.unary.sequence.OneOfSequence.omit_hashcode_values_Simplify’
OneOfString

Represents String variables that take on only a few distinct values. Prints as either x == ¢ (when
there is only one value) or as x one of {c1, c2, c3} (when there are multiple values).

See also the following configuration option:
e ‘daikon.inv.unary.string.0ne0fString.size’
OneOfStringSequence

Represents String[] variables that take on only a few distinct values. Prints as either x == ¢ (when
there is only one value) or as x one of {c1, c2, c3} (when there are multiple values).

See also the following configuration option:

DRAFT 4 May 2020

Chapter 5: Daikon output 33

e ‘daikon.inv.unary.stringsequence.One0fStringSequence.size’

PairwiseFloatEqual
Represents an invariant between corresponding elements of two sequences of double values. The
length of the sequences must match for the invariant to hold. A comparison is made over each
(x[i], y[i]) pair. Thus, x[0] is compared to y[0], x[1] to y[1], and so forth. Prints as x[] ==
y[].

PairwiseFloatGreaterEqual
Represents an invariant between corresponding elements of two sequences of double values. The
length of the sequences must match for the invariant to hold. A comparison is made over each
(x[i], y[i]) pair. Thus, x[0] is compared to y[0], x[1] to y[1], and so forth. Prints as x[] >=
y[].

PairwiseFloatGreaterThan
Represents an invariant between corresponding elements of two sequences of double values. The
length of the sequences must match for the invariant to hold. A comparison is made over each
(x[i], y[i]) pair. Thus, x[0] is compared to y[0], x[1] to y[1], and so forth. Prints as x[] >
y[].

PairwiseFloatLessEqual
Represents an invariant between corresponding elements of two sequences of double values. The
length of the sequences must match for the invariant to hold. A comparison is made over each
(x[i], y[i]) pair. Thus, x[0] is compared to y[0], x[1] to y[1], and so forth. Prints as x[] <=
y[].

PairwiseFloatLessThan
Represents an invariant between corresponding elements of two sequences of double values. The
length of the sequences must match for the invariant to hold. A comparison is made over each
(x[i], y[i]) pair. Thus, x[0] is compared to y[0], x[1] to y[1], and so forth. Prints as x[] <
y[].

PairwiseIntEqual
Represents an invariant between corresponding elements of two sequences of long values. The length
of the sequences must match for the invariant to hold. A comparison is made over each (x[i],
y[i]) pair. Thus, x[0] is compared to y[0], x[1] to y[1], and so forth. Prints as x[] == y[].

PairwiselntGreaterEqual
Represents an invariant between corresponding elements of two sequences of long values. The length
of the sequences must match for the invariant to hold. A comparison is made over each (x[i],
y[i]l) pair. Thus, x[0] is compared to y[0], x[1] to y[1], and so forth. Prints as x[] >= y[].

PairwiseIntGreaterThan
Represents an invariant between corresponding elements of two sequences of long values. The length
of the sequences must match for the invariant to hold. A comparison is made over each (x[i],
y[i]l) pair. Thus, x[0] is compared to y[0], x[1] to y[1], and so forth. Prints as x[] > y[].

PairwiseIntLessEqual
Represents an invariant between corresponding elements of two sequences of long values. The length
of the sequences must match for the invariant to hold. A comparison is made over each (x[i],
y[il) pair. Thus, x[0] is compared to y[0], x[1] to y[1], and so forth. Prints as x[] <= y[].

PairwiselntLessThan
Represents an invariant between corresponding elements of two sequences of long values. The length
of the sequences must match for the invariant to hold. A comparison is made over each (x[i],
y[1]) pair. Thus, x[0] is compared to y[0], x[1] to y[1], and so forth. Prints as x[] < y[].

DRAFT 4 May 2020

Chapter 5: Daikon output 34

PairwiseLinearBinary
Represents a linear invariant (i.e., y = ax + b) between the corresponding elements of two sequences
of long values. Each (x[i], y[i]) pair is examined. Thus, x[0] is compared to y[0], x[1] to y[1]
and so forth. Prints as y[] = a * x[] + b.

PairwiseLinearBinaryFloat
Represents a linear invariant (i.e., y = ax + b) between the corresponding elements of two sequences
of double values. FEach (x[i], y[i]) pair is examined. Thus, x[0] is compared to y[0], x[1] to
y[1] and so forth. Prints as y[] = a * x[] + b.

PairwiseNumericFloat.Divides
Represents the divides without remainder invariant between corresponding elements of two sequences
of double. Prints as x[1 % y[1 == 0.

PairwiseNumericFloat.Square
Represents the square invariant between corresponding elements of two sequences of double. Prints
as x[1 = y[I**2.

PairwiseNumericFloat.ZeroTrack
Represents the zero tracks invariant between corresponding elements of two sequences of double;
that is, when x[] is zero, y[] is also zero. Prints as x[] =0 =>y[] = 0.

This invariant is not enabled by default. See the configuration option ‘daikon.inv.binary.twoSequence.

PairwiseNumericInt.BitwiseAndZero
Represents the BitwiseAnd == 0 invariant between corresponding elements of two sequences of long;
that is, x[] and y[] have no bits in common. Prints as x[] & y[] ==

This invariant is not enabled by default. See the configuration option ‘daikon.inv.binary.twoSequence.

PairwiseNumericlnt.BitwiseComplement
Represents the bitwise complement invariant between corresponding elements of two sequences of
long. Prints as x[] = “y[].

This invariant is not enabled by default. See the configuration option ‘daikon.inv.binary.twoSequence.

PairwiseNumericInt.BitwiseSubset
Represents the bitwise subset invariant between corresponding elements of two sequences of long;
that is, the bits of y[] are a subset of the bits of x[]. Prints as x[1 = y[1 | x[].

This invariant is not enabled by default. See the configuration option ‘daikon.inv.binary.twoSequence.

PairwiseNumericInt.Divides
Represents the divides without remainder invariant between corresponding elements of two sequences
of long. Prints as x[] % y[] == 0.

PairwiseNumericInt.ShiftZero
Represents the ShiftZero invariant between corresponding elements of two sequences of long; that is,
x [] right-shifted by y[] is always zero. Prints as x[] >> y[] = 0.

This invariant is not enabled by default. See the configuration option ‘daikon.inv.binary.twoSequence.

PairwiseNumericInt.Square
Represents the square invariant between corresponding elements of two sequences of long. Prints as
x[1 = y[1**2.

PairwiseNumericInt.ZeroTrack
Represents the zero tracks invariant between corresponding elements of two sequences of long; that
is, when x[] is zero, y[] is also zero. Prints as x[] = 0 => y[] = 0.

This invariant is not enabled by default. See the configuration option ‘daikon.inv.binary.twoSequence.

DRAFT 4 May 2020

Pairw:

Pairw:

Pairw:

Pairw:

Pairw:

Pairw:

Chapter 5: Daikon output 35

PairwiseString.SubString
Represents the substring invariant between corresponding elements of two sequences of String. Prints
as x[] is a substring of y[].

This invariant is not enabled by default. See the configuration option ‘daikon.inv.binary.twoSequence.Pairw:

PairwiseStringEqual
Represents an invariant between corresponding elements of two sequences of String values. The
length of the sequences must match for the invariant to hold. A comparison is made over each
(x[i], y[i]) pair. Thus, x[0] is compared to y[0], x[1] to y[1], and so forth. Prints as x[] ==
y[I.

PairwiseStringGreaterEqual
Represents an invariant between corresponding elements of two sequences of String values. The
length of the sequences must match for the invariant to hold. A comparison is made over each
(x[i], y[i]) pair. Thus, x[0] is compared to y[0], x[1] to y[1], and so forth. Prints as x[] >=
y[I.

PairwiseStringGreaterThan
Represents an invariant between corresponding elements of two sequences of String values. The
length of the sequences must match for the invariant to hold. A comparison is made over each
(x[i], y[i]) pair. Thus, x[0] is compared to y[0], x[1] to y[1], and so forth. Prints as x[] >
y[.

PairwiseStringLessEqual
Represents an invariant between corresponding elements of two sequences of String values. The
length of the sequences must match for the invariant to hold. A comparison is made over each
(x[i], y[i]) pair. Thus, x[0] is compared to y[0], x[1] to y[1], and so forth. Prints as x[] <=
y[.

PairwiseStringLessThan
Represents an invariant between corresponding elements of two sequences of String values. The
length of the sequences must match for the invariant to hold. A comparison is made over each
(x[i], y[i]) pair. Thus, x[0] is compared to y[0], x[1] to y[1], and so forth. Prints as x[] <
y[.

Positive
Represents the invariant x > 0 where x is a long scalar. This exists only as an example for the purposes
of the manual. It isn’t actually used (it is replaced by the more general invariant LowerBound).

PrintableString
Represents a string that contains only printable ascii characters (values 32 through 126 plus 9 (tab).

This invariant is not enabled by default. See the configuration option ‘daikon.inv.unary.string.PrintableSt:

RangeFloat. EqualMinusOne
Internal invariant representing double scalars that are equal to minus one. Used for non-instantiating
suppressions. Will never print since OneOf accomplishes the same thing.

RangeFloat.EqualOne
Internal invariant representing double scalars that are equal to one. Used for non-instantiating
suppressions. Will never print since OneOf accomplishes the same thing.

RangeFloat.EqualZero
Internal invariant representing double scalars that are equal to zero. Used for non-instantiating
suppressions. Will never print since OneOf accomplishes the same thing.

DRAFT 4 May 2020

Chapter 5: Daikon output 36

RangeFloat.GreaterEqual64
Internal invariant representing double scalars that are greater than or equal to 64. Used for non-
instantiating suppressions. Will never print since Bound accomplishes the same thing.

RangeFloat.GreaterEqualZero
Internal invariant representing double scalars that are greater than or equal to 0. Used for non-
instantiating suppressions. Will never print since Bound accomplishes the same thing.

Rangelnt.BooleanVal
Internal invariant representing longs whose values are always 0 or 1. Used for non-instantiating
suppressions. Will never print since OneOf accomplishes the same thing.

Rangelnt.Bound(0-63
Internal invariant representing longs whose values are between 0 and 63. Used for non-instantiating
suppressions. Will never print since Bound accomplishes the same thing.

Rangelnt.EqualMinusOne
Internal invariant representing long scalars that are equal to minus one. Used for non-instantiating
suppressions. Will never print since OneOf accomplishes the same thing.

Rangelnt.EqualOne
Internal invariant representing long scalars that are equal to one. Used for non-instantiating sup-
pressions. Will never print since OneOf accomplishes the same thing.

Rangelnt.EqualZero
Internal invariant representing long scalars that are equal to zero. Used for non-instantiating sup-
pressions. Will never print since OneOf accomplishes the same thing.

Rangelnt.Even
Invariant representing longs whose values are always even. Used for non-instantiating suppressions.
Since this is not covered by the Bound or OneOf invariants it is printed. Prints as x is even.

This invariant is not enabled by default. See the configuration option ‘daikon.inv.unary.scalar.RangeInt.Eve

Rangelnt.GreaterEqual64
Internal invariant representing long scalars that are greater than or equal to 64. Used for non-
instantiating suppressions. Will never print since Bound accomplishes the same thing.

Rangelnt.GreaterEqualZero
Internal invariant representing long scalars that are greater than or equal to 0. Used for non-
instantiating suppressions. Will never print since Bound accomplishes the same thing.

Rangelnt.PowerOfTwo
Invariant representing longs whose values are always a power of 2 (exactly one bit is set). Used
for non-instantiating suppressions. Since this is not covered by the Bound or OneOf invariants it is
printed. Prints as x is a power of 2.

Reverse
Represents two sequences of long where one is in the reverse order of the other. Prints as x[] is
the reverse of y[].

ReverseFloat
Represents two sequences of double where one is in the reverse order of the other. Prints as x[] is
the reverse of y[].

SeqFloatEqual
Represents an invariant between a double scalar and a a sequence of double values. Prints as x[]
elements == y where x is a double sequence and y is a double scalar.

DRAFT 4 May 2020

Chapter 5: Daikon output 37

SeqFloatGreaterEqual
Represents an invariant between a double scalar and a a sequence of double values. Prints as x[]
elements >= y where x is a double sequence and y is a double scalar.

SeqFloatGreaterThan
Represents an invariant between a double scalar and a a sequence of double values. Prints as x[]
elements > y where x is a double sequence and y is a double scalar.

SeqFloatLessEqual
Represents an invariant between a double scalar and a a sequence of double values. Prints as x[]
elements <= y where x is a double sequence and y is a double scalar.

SeqFloatLessThan
Represents an invariant between a double scalar and a a sequence of double values. Prints as x[]
elements < y where x is a double sequence and y is a double scalar.

SeqlndexFloatEqual
Represents an invariant over sequences of double values between the index of an element of the
sequence and the element itself. Prints as x[i] == 1.

This invariant is not enabled by default. See the configuration option ‘daikon.inv.unary.sequence.SeqIndexF]

SeqlndexFloatGreaterEqual
Represents an invariant over sequences of double values between the index of an element of the
sequence and the element itself. Prints as x[i] >= 1.

This invariant is not enabled by default. See the configuration option ‘daikon.inv.unary.sequence.SeqIndexF]
SeqlndexFloatGreaterThan

Represents an invariant over sequences of double values between the index of an element of the
sequence and the element itself. Prints as x[i] > i.

This invariant is not enabled by default. See the configuration option ‘daikon.inv.unary.sequence.SeqIndexF]
SeqlndexFloatLessEqual

Represents an invariant over sequences of double values between the index of an element of the
sequence and the element itself. Prints as x[i] <= i.

This invariant is not enabled by default. See the configuration option ‘daikon.inv.unary.sequence.SeqIndexF]
SeqlndexFloatLessThan

Represents an invariant over sequences of double values between the index of an element of the
sequence and the element itself. Prints as x[i] < i.

This invariant is not enabled by default. See the configuration option ‘daikon.inv.unary.sequence.SeqIndexF]
SeqlndexFloatNonEqual

Represents an invariant over sequences of double values between the index of an element of the
sequence and the element itself. Prints as x[i] != 1.

This invariant is not enabled by default. See the configuration option ‘daikon.inv.unary.sequence.SeqIndexF]
SeqlndexIntEqual

Represents an invariant over sequences of long values between the index of an element of the sequence
and the element itself. Prints as x[i] == i.

This invariant is not enabled by default. See the configuration option ‘daikon.inv.unary.sequence.SeqIndexIr
SeqlndexIntGreaterEqual

Represents an invariant over sequences of long values between the index of an element of the sequence
and the element itself. Prints as x[i] >= i.

This invariant is not enabled by default. See the configuration option ‘daikon.inv.unary.sequence.SeqIndexIr

DRAFT 4 May 2020

Chapter 5: Daikon output 38

SeqIndexIntGreaterThan
Represents an invariant over sequences of long values between the index of an element of the sequence
and the element itself. Prints as x[i] > i.

This invariant is not enabled by default. See the configuration option ‘daikon.inv.unary.sequence.SeqIndexIr
SeqlndexIntLessEqual

Represents an invariant over sequences of long values between the index of an element of the sequence
and the element itself. Prints as x[i] <= i.

This invariant is not enabled by default. See the configuration option ‘daikon.inv.unary.sequence.SeqIndexIr
SeqlndexIntLessThan

Represents an invariant over sequences of long values between the index of an element of the sequence
and the element itself. Prints as x[i] < i.

This invariant is not enabled by default. See the configuration option ‘daikon.inv.unary.sequence.SeqIndexIr

SeqlndexIntNonEqual
Represents an invariant over sequences of long values between the index of an element of the sequence
and the element itself. Prints as x[i] !'= i.

This invariant is not enabled by default. See the configuration option ‘daikon.inv.unary.sequence.SeqIndexIr

SeqlntEqual
Represents an invariant between a long scalar and a a sequence of long values. Prints as x[] elements
== y where x is a long sequence and y is a long scalar.

SeqlntGreaterEqual
Represents an invariant between a long scalar and a a sequence of long values. Prints as x[] elements
>=y where x is a long sequence and y is a long scalar.

SeqIlntGreaterThan
Represents an invariant between a long scalar and a a sequence of long values. Prints as x[] elements
> y where x is a long sequence and y is a long scalar.

SeqlntLessEqual
Represents an invariant between a long scalar and a a sequence of long values. Prints as x[] elements
<=y where x is a long sequence and y is a long scalar.

SeqIntLessThan
Represents an invariant between a long scalar and a a sequence of long values. Prints as x[] elements
< y where x is a long sequence and y is a long scalar.

SeqSeqFloatEqual
Represents invariants between two sequences of double values. If order matters for each vari-
able (which it does by default), then the sequences are compared lexically. Prints as x[] == y[]
lexically.
If order doesn’t matter for each variable, then the sequences are compared to see if they are set
equivalent. Prints as x[] == y[].
If the auxiliary information (e.g., order matters) doesn’t match between two variables, then this
invariant cannot apply to those variables.

SeqSegFloatGreaterEqual
Represents invariants between two sequences of double values. If order matters for each vari-
able (which it does by default), then the sequences are compared lexically. Prints as x[] >= y[]
lexically.
If the auxiliary information (e.g., order matters) doesn’t match between two variables, then this
invariant cannot apply to those variables.

DRAFT 4 May 2020

Chapter 5: Daikon output 39

SeqSeqFloatGreaterThan
Represents invariants between two sequences of double values. If order matters for each variable
(which it does by default), then the sequences are compared lexically. Prints as x[] > y[] lexically.

If the auxiliary information (e.g., order matters) doesn’t match between two variables, then this
invariant cannot apply to those variables.

SeqSeqgFloatLessEqual
Represents invariants between two sequences of double values. If order matters for each vari-
able (which it does by default), then the sequences are compared lexically. Prints as x[] <= y[]
lexically.

If the auxiliary information (e.g., order matters) doesn’t match between two variables, then this
invariant cannot apply to those variables.

SeqgSeqFloatLessThan
Represents invariants between two sequences of double values. If order matters for each variable
(which it does by default), then the sequences are compared lexically. Prints asx[] < y[] lexically.

If the auxiliary information (e.g., order matters) doesn’t match between two variables, then this
invariant cannot apply to those variables.

SeqSeqlntEqual
Represents invariants between two sequences of long values. If order matters for each variable (which
it does by default), then the sequences are compared lexically. Prints as x[] == y[] lexically.

If order doesn’t matter for each variable, then the sequences are compared to see if they are set
equivalent. Prints as x[] == y[].

If the auxiliary information (e.g., order matters) doesn’t match between two variables, then this
invariant cannot apply to those variables.

SeqSeqIntGreaterEqual
Represents invariants between two sequences of long values. If order matters for each variable (which
it does by default), then the sequences are compared lexically. Prints as x[] >= y[] lexically.

If the auxiliary information (e.g., order matters) doesn’t match between two variables, then this
invariant cannot apply to those variables.

SeqSeqlntGreaterThan
Represents invariants between two sequences of long values. If order matters for each variable (which
it does by default), then the sequences are compared lexically. Prints as x[] > y[] lexically.

If the auxiliary information (e.g., order matters) doesn’t match between two variables, then this
invariant cannot apply to those variables.

SeqSeqIntLessEqual
Represents invariants between two sequences of long values. If order matters for each variable (which
it does by default), then the sequences are compared lexically. Prints as x[] <= y[] lexically.

If the auxiliary information (e.g., order matters) doesn’t match between two variables, then this
invariant cannot apply to those variables.

SeqSeqIntLessThan
Represents invariants between two sequences of long values. If order matters for each variable (which
it does by default), then the sequences are compared lexically. Prints as x[] < y[] lexically.

If the auxiliary information (e.g., order matters) doesn’t match between two variables, then this
invariant cannot apply to those variables.

DRAFT 4 May 2020

Chapter 5: Daikon output 40

SeqgSeqStringEqual
Represents invariants between two sequences of String values. If order matters for each vari-
able (which it does by default), then the sequences are compared lexically. Prints as x[] == y[]
lexically.

If order doesn’t matter for each variable, then the sequences are compared to see if they are set
equivalent. Prints as x[] == y[].

If the auxiliary information (e.g., order matters) doesn’t match between two variables, then this
invariant cannot apply to those variables.

SeqSeqStringGreaterEqual
Represents invariants between two sequences of String values. If order matters for each vari-
able (which it does by default), then the sequences are compared lexically. Prints as x[1 >= y[]
lexically.

If the auxiliary information (e.g., order matters) doesn’t match between two variables, then this
invariant cannot apply to those variables.

SeqSeqStringGreaterThan
Represents invariants between two sequences of String values. If order matters for each variable
(which it does by default), then the sequences are compared lexically. Prints as x[] > y[] lexically.

If the auxiliary information (e.g., order matters) doesn’t match between two variables, then this
invariant cannot apply to those variables.

SeqSeqStringLessEqual
Represents invariants between two sequences of String values. If order matters for each vari-
able (which it does by default), then the sequences are compared lexically. Prints as x[1 <= y[]
lexically.

If the auxiliary information (e.g., order matters) doesn’t match between two variables, then this
invariant cannot apply to those variables.

SeqSeqStringLessThan
Represents invariants between two sequences of String values. If order matters for each variable
(which it does by default), then the sequences are compared lexically. Prints asx[] < y[] lexically.

If the auxiliary information (e.g., order matters) doesn’t match between two variables, then this

invariant cannot apply to those variables.
StdString.SubString

Represents the substring invariant between two String scalars. Prints as x is a substring of y.

This invariant is not enabled by default. See the configuration option ‘daikon.inv.binary.twoString.StdStrir
StringEqual

Represents an invariant of == between two String scalars. Prints as x ==

StringGreaterEqual
Represents an invariant of >= between two String scalars. Prints as x >=y.

StringGreaterThan
Represents an invariant of > between two String scalars. Prints as x > y.

StringLessEqual
Represents an invariant of <= between two String scalars. Prints as x <= y.

StringLessThan
Represents an invariant of < between two String scalars. Prints as x < y.

DRAFT 4 May 2020

Chapter 5: Daikon output 41

StringNonEqual
Represents an invariant of != between two String scalars. Prints as x !=y.

SubSequence
Represents two sequences of long values where one sequence is a subsequence of the other. Prints as
x[] is a subsequence of y[].

This invariant is not enabled by default. See the configuration option ‘daikon.inv.binary.twoSequence.

SubSequenceFloat
Represents two sequences of double values where one sequence is a subsequence of the other. Prints
as x[] is a subsequence of y[].

This invariant is not enabled by default. See the configuration option ‘daikon.inv.binary.twoSequence.

SubSet
Represents two sequences of long values where one of the sequences is a subset of the other; that is
each element of one sequence appears in the other. Prints as either x[] is a subset of y[] or as
x[] is a superset of y[].

This invariant is not enabled by default. See the configuration option ‘daikon.inv.binary.twoSequence.

SubSetFloat
Represents two sequences of double values where one of the sequences is a subset of the other; that
is each element of one sequence appears in the other. Prints as either x[] is a subset of y[] or as
x[] is a superset of y[].

This invariant is not enabled by default. See the configuration option ‘daikon.inv.binary.twoSequence.

SuperSequence
Represents two sequences of long values where one sequence is a subsequence of the other. Prints as
x[] is a subsequence of y[].

This invariant is not enabled by default. See the configuration option ‘daikon.inv.binary.twoSequence.

SuperSequenceFloat
Represents two sequences of double values where one sequence is a subsequence of the other. Prints
as x[] is a subsequence of y[].

This invariant is not enabled by default. See the configuration option ‘daikon.inv.binary.twoSequence.

SuperSet
Represents two sequences of long values where one of the sequences is a subset of the other; that is
each element of one sequence appears in the other. Prints as either x[] is a subset of y[] or as
x[] is a superset of y[].

This invariant is not enabled by default. See the configuration option ‘daikon.inv.binary.twoSequence.

SuperSetFloat
Represents two sequences of double values where one of the sequences is a subset of the other; that
is each element of one sequence appears in the other. Prints as either x[] is a subset of y[] or as
x[] is a superset of y[].

This invariant is not enabled by default. See the configuration option ‘daikon.inv.binary.twoSequence.

UpperBound
Represents the invariant x <= ¢, where c is a constant and x is a long scalar.

See also the following configuration options:
e ‘daikon.inv.unary.scalar.UpperBound.minimal_interesting’

e ‘daikon.inv.unary.scalar.UpperBound.maximal_interesting’

DRAFT 4 May 2020

SubSec

SubSec

SubSet

SubSet

Supers

Supers

Super;

Supers

Chapter 5: Daikon output 42

UpperBoundFloat
Represents the invariant x <= ¢, where c is a constant and x is a double scalar.

See also the following configuration options:
e ‘daikon.inv.unary.scalar.UpperBoundFloat.minimal_interesting’
e ‘daikon.inv.unary.scalar.UpperBoundFloat.maximal_interesting’

5.6 Invariant filters

Invariant filters are used to suppress the printing of invariants that are true, but not considered “inter-
esting” — usually because the invariants are considered obvious or redundant in a given context.

The following is a list of the invariant filters that Daikon supports. Each of these filters has a corre-
sponding configuration enable switch; by default, all filters are enabled. See Section 6.1.1.1 [Options to
enable/disable filters], page 44, for details.

e DerivedParameterFilter: suppress parameter-derived postcondition invariants

This filter suppresses invariants at procedure exit points that are uninteresting because they refer to
‘pre-state’ variables derived from pass-by-value parameters. For example, suppose that param is a
parameter to a Java method. If param itself is modified, that change won’t be visible to a caller, so
it’s uninteresting to print. If param points to an object, and that object is changed, that is visible,
but only if param hasn’t changed; otherwise, the invariant would report a change in some object other
than the one that was passed in.

e ObviousFilter: suppress “obvious”, or redundant, invariants — that is, invariants that are implied by
some other invariant

This filter suppresses any invariant that is a logical consequence of other invariants that are printed.
This keeps the output from becoming cluttered with redundant facts. Some examples are:

o If ‘size(args[])==0’is shown, then ‘size(args[])-1==-1"is obvious and will not be displayed
by default.

o If ‘this.topOfStack < size(this.theArray[])-1’ is shown, then ‘this.topOfStack <
size(this.theArray[])’ is obvious and will not be displayed by default.

To suppress even more invariants, use the --suppress_redundant command-line option; see
Section 4.2 [Options to control invariant detection], page 15.

e OnlyConstantVariablesFilter: suppress invariants containing only constants

This filter suppresses comparison invariants in which all of the variables being compared were observed
to be constant. In the current version of Daikon, most such invariants are not even created in the
first place, because constants are detected on an early pass over the data. However, Daikon will note
that all of the invariants that had any particular constant value were also equal to each other: such
invariants will be suppressed by this filter.

e ParentFilter: filter invariants that match a parent program point invariant

A controlled invariant is an invariant that is “controlled” — or implied — by a parent program point
in the dataflow hierarchy. For example, for Java instrumented code each class is associated with an
object program point, which contain invariants that are found at the entry and exit of all public
methods. So in addition to the usual program points such as StackAr.StackAr(int):::ENTER
and StackAr.isEmpty():::EXIT48, Daikon outputs invariants for the artificial program
point StackAr:::0BJECT. The invariants for StackAr:::0BJECT control the invariants for
StackAr.StackAr(int):::ENTER and StackAr.isEmpty() :::EXIT48, because the former imply the
latter. Because of this redundancy, controlled invariants are not displayed by default. Note that if for
some reason, the controlling invariant is not displayed (for example, because it’s unjustified), then
the controlled invariant will be displayed.

DRAFT 4 May 2020

Chapter 5: Daikon output 43

e SimplifyFilter: eliminate redundant invariants using Simplify

Daikon contains built-in test that remove most redundant (logically implied) invariants from its output;
see

Daikon can use the Simplify theorem-prover to eliminate even more implied invariants than Daikon’s
built-in tests are able to eliminate. Simplify must be installed in order to take advantage of this filter
(see Section 9.1.11.1 [Installing Simplify|, page 115).

If you don’t also specify the -—suppress_redundant command-line option (see Section 4.2 [Options
to control invariant detection|, page 15) to enable Simplify processing, this filter doesn’t do anything.

e UnjustifiedFilter: suppress unjustified invariants

For every invariant, Daikon estimates the probability of that invariant happening by chance. If that
probability is less than the limit, then the invariant is deemed to be an actual invariant, not just a
chance occurrence. Currently the limit is .01. So by default, only invariants with probabilities of less
than 1% are shown. See the --conf_limit option (Section 4.2 [Options to control invariant detection]
page 15).

9

e UnmodifiedVariableEqualityFilter: suppress invariants that merely indicate that a variable was un-
modified

This filter is only useful for ESC output.

DRAFT 4 May 2020

Chapter 6: Enhancing Daikon output 44

6 Enhancing Daikon output

6.1 Configuration options

Many aspects of Daikon’s behavior can be controlled by setting various configuration parameters. These
configuration parameters control which invariants are checked and reported, the statistical tests for invari-
ants, which derived variables are created, and more.

There are two ways to set configuration options. You can specify a configuration setting directly on the
command line, using the --config_option name=value option (which you may repeat as many times as
you want). Or, you can create a configuration file and supplying it to Daikon on the command line using
the -—config filename option. Daikon applies all the command-line arguments in order. You may wish
to use the supplied example configuration file daikon/java/daikon/config/example-settings.txt as
an example when creating your own configuration files. (If you did not download Daikon’s sources, you
must extract the example from daikon. jar to read it.)

You can also control Daikon’s output via its command-line options (see Chapter 4 [Running Daikon],
page 13) and via the command-line options to its front ends — such as DynComp (see Section 7.2.2
[DynComp for Java options], page 70), Chicory (see Section 7.1.1 [Chicory options|, page 61) or Kvasir
(see Section 7.3.2 [Kvasir options]|, page 74).

The configuration options are different from the debugging flags --debug and --dbg category (see
Section 4.5 [Daikon debugging options|, page 17). The debugging flags permit Daikon to produce debugging

output, but they do not affect the invariants that Daikon computes.

6.1.1 List of configuration options

This is a list of all Daikon configuration options. The configuration option name contains the Java class
in which it is defined. (In the Daikon source code, the configuration value is stored in a variable whose
name contains a dkconfig_ prefix, but that should be irrelevant to users.) To learn more about a specific
invariant or derived variable than appears in this manual, see its source code.

6.1.1.1 Options to enable/disable filters

These configuration options enable or disable filters that suppress printing of certain invariants. Invari-
ants are filtered if they are redundant. See Section 5.6 [Invariant filters|, page 42, for more information.

daikon.inv.filter.DerivedParameterFilter.enabled
Boolean. If true, DerivedParameterFilter is initially turned on. The default value is ‘true’.

daikon.inv.filter.DotNetStringFilter.enabled
Boolean. If true, DotNetStringFilter is initially turned on. See its Javadoc. The default value is
‘false’.

daikon.inv.filter.ObviousFilter.enabled
Boolean. If true, ObviousFilter is initially turned on. The default value is ‘true’.

daikon.inv.filter.OnlyConstantVariablesFilter.enabled
Boolean. If true, OnlyConstantVariablesFilter is initially turned on. The default value is ‘true’.

daikon.inv.filter.ParentFilter.enabled
Boolean. If true, ParentFilter is initially turned on. The default value is ‘true’.

daikon.inv.filter.ReadonlyPrestateFilter.enabled
Boolean. If true, ReadonlyPrestateFilter is initially turned on. The default value is ‘true’.

DRAFT 4 May 2020

Chapter 6: Enhancing Daikon output 45

daikon.inv.filter.SimplifyFilter.enabled
Boolean. If true, SimplifyFilter is initially turned on. The default value is ‘true’.

daikon.inv.filter.UnjustifiedFilter.enabled
Boolean. If true, UnjustifiedFilter is initially turned on. The default value is ‘true’.

daikon.inv.filter.UnmodifiedVariableEqualityFilter.enabled
Boolean. If true, UnmodifiedVariableEqualityFilter is initially turned on. The default value is ‘true’.

6.1.1.2 Options to enable/disable specific invariants

These options control whether Daikon looks for specific kinds of invariants. See Section 5.5 [Invariant
list], page 23, for more information about the corresponding invariants.

daikon.inv.unary.scalar.CompleteOneOfScalar.enabled
Boolean. True iff CompleteOneOfScalar invariants should be considered. The default value is ‘false’.

daikon.inv.unary.scalar.IsPointer.enabled
Boolean. True iff IsPointer invariants should be considered. The default value is ‘false’.

daikon.inv.unary.scalar.Modulus.enabled
Boolean. True iff Modulus invariants should be considered. The default value is ‘false’.

daikon.inv.unary.scalar.NonModulus.enabled
Boolean. True iff NonModulus invariants should be considered. The default value is ‘false’.

daikon.inv.unary.scalar.Positive.enabled
Boolean. True iff Positive invariants should be considered. The default value is ‘true’.

daikon.inv.unary.string.CompleteOneOfString.enabled
Boolean. True iff CompleteOneOfString invariants should be considered. The default value is ‘false’.

daikon.inv.unary.string.PrintableString.enabled
Boolean. True iff PrintableString invariants should be considered. The default value is ‘false’.

daikon.inv.unary.stringsequence.CommonStringSequence.enabled
Boolean. True iff CommonStringSequence invariants should be considered. The default value is
‘false’.

6.1.1.3 Other invariant configuration parameters

The configuration options listed in this section parameterize the behavior of certain invariants. See
Section 5.5 [Invariant list], page 23, for more information about the invariants.

daikon.inv.Invariant.confidence_limit
Floating-point number between 0 and 1. Invariants are displayed only if the confidence that the
invariant did not occur by chance is greater than this. (May also be set via the --conf_limit
command-line option to Daikon; refer to manual.) The default value is ‘0.99’.

daikon.inv.Invariant.fuzzy_ratio
Floating-point number between 0 and 0.1, representing the maximum relative difference between
two floats for fuzzy comparisons. Larger values will result in floats that are relatively farther apart
being treated as equal. A value of 0 essentially disables fuzzy comparisons. Specifically, if abs(1 -
£1/£2) is less than or equal to this value, then the two doubles (f1 and £2) will be treated as equal
by Daikon. The default value is ‘1.0E-4".

daikon.inv.Invariant.simplify_define_predicates
A boolean value. If true, Daikon’s Simplify output (printed when the --format simplify flag is
enabled, and used internally by --suppress_redundant) will include new predicates representing

DRAFT 4 May 2020

Chapter 6: Enhancing Daikon output 46

some complex relationships in invariants, such as lexical ordering among sequences. If false, some
complex relationships will appear in the output as complex quantified formulas, while others will not
appear at all. When enabled, Simplify may be able to make more inferences, allowing --suppress_
redundant to suppress more redundant invariants, but Simplify may also run more slowly. The
default value is ‘false’.

daikon.inv.filter.DerivedVariableFilter.class_re
Regular expression to match against the class name of derived variables. Invariants that contain
derived variables that match will be filtered out. If null, nothing will be filtered out. The default
value is ‘null’.

daikon.inv.unary.sequence.SingleSequence.SeqIndexDisableAll
Boolean. Set to true to disable all SeqIndex invariants (SeqIndexIntEqual, SeqIndexFloatLessThan,
etc). This overrides the settings of the individual SeqIndex enable configuration options. To disable
only some options, the options must be disabled individually. The default value is ‘false’.

6.1.1.4 Options to enable/disable derived variables

These options control whether Daikon looks for invariants involving certain forms of derived variables.
Also see Section 5.3 [Variable names], page 20.

daikon.derive.Derivation.disable_derived_variables
Boolean. If true, Daikon will not create any derived variables. Derived variables, which are combi-
nations of variables that appeared in the program, like array[index] if array and index appeared,
can increase the number of properties Daikon finds, especially over sequences. However, derived
variables increase Daikon’s time and memory usage, sometimes dramatically. If false, individual
kinds of derived variables can be enabled or disabled individually using configuration options under
daikon.derive. The default value is ‘false’.

daikon.derive.binary.SequencesConcat.enabled
Boolean. True iff SequencesConcat derived variables should be created. The default value is ‘false’.

daikon.derive.unary.Sequencelength.enabled
Boolean. True iff SequenceLength derived variables should be generated. The default value is ‘true’.

daikon.derive.unary.SequenceMax.enabled
Boolean. True iff SequencesMax derived variables should be generated. The default value is ‘false’.

daikon.derive.unary.SequenceMin.enabled
Boolean. True iff SequenceMin derived variables should be generated. The default value is ‘false’.

daikon.derive.unary.SequenceSum.enabled
Boolean. True iff SequenceSum derived variables should be generated. The default value is ‘false’.

daikon.derive.unary.Stringlength.enabled
Boolean. True iff StringLength derived variables should be generated. The default value is ‘false’.

6.1.1.5 Simplify interface configuration options

The configuration options in this section are used to customize the interface to the Simplify theorem
prover. See the description of the —-suppress_redundant command-line option in Section 4.2 [Options to
control invariant detection], page 15.

daikon.simplify.LemmaStack.print_contradictions
Boolean. Controls Daikon’s response when inconsistent invariants are discovered while running Sim-
plify. If true, Daikon will print an error message to the standard error stream listing the contradictory

DRAFT 4 May 2020

Chapter 6: Enhancing Daikon output 47

invariants. This is mainly intended for debugging Daikon itself, but can sometimes be helpful in trac-
ing down other problems. For more information, see the section on troubleshooting contradictory
invariants in the Daikon manual. The default value is ‘false’.

daikon.simplify.LemmaStack.remove_contradictions
Boolean. Controls Daikon’s response when inconsistent invariants are discovered while running
Simplify. If false, Daikon will give up on using Simplify for that program point. If true, Daikon
will try to find a small subset of the invariants that cause the contradiction and avoid them, to
allow processing to continue. For more information, see the section on troubleshooting contradictory
invariants in the Daikon manual. The default value is ‘true’.

daikon.simplify.LemmaStack.synchronous_errors
Boolean. If true, ask Simplify to check a simple proposition after each assumption is pushed, pro-
viding an opportunity to wait for output from Simplify and potentially receive error messages about
the assumption. When false, long sequences of assumptions may be pushed in a row, so that by the
time an error message arrives, it’s not clear which input caused the error. Of course, Daikon’s input
to Simplify isn’t supposed to cause errors, so this option should only be needed for debugging. The
default value is ‘false’.

daikon.simplify.Session.simplify_max_iterations

A non-negative integer, representing the largest number of iterations for which Simplify should be
allowed to run on any single conjecture before giving up. Larger values may cause Simplify to
run longer, but will increase the number of invariants that can be recognized as redundant. The
default value is small enough to keep Simplify from running for more than a few seconds on any one
conjecture, allowing it to verify most simple facts without getting bogged down in long searches. A
value of 0 means not to bound the number of iterations at all, though see also the simplify_timeout
parameter..

daikon.simplify.Session.simplify_timeout

A non-negative integer, representing the longest time period (in seconds) Simplify should be allowed
to run on any single conjecture before giving up. Larger values may cause Simplify to run longer,
but will increase the number of invariants that can be recognized as redundant. Roughly speaking,
the time spent in Simplify will be bounded by this value, times the number of invariants generated,
though it can be much less. A value of 0 means to not bound Simplify at all by time, though also see
the option simplify_max_iterations. Beware that using this option might make Daikon’s output
depend on the speed of the machine it’s run on. The default value is ‘0’.

daikon.simplify.Session.trace_input
Boolean. If true, the input to the Simplify theorem prover will also be directed to a file named
simplifyN.in (where N is a number starting from 0) in the current directory. Simplify’s operation
can then be reproduced with a command like Simplify -nosc <simplify0.in. This is intended
primarily for debugging when Simplify fails. The default value is ‘false’.

daikon.simplify.Session.verbose_progress

Positive values mean to print extra indications as each candidate invariant is passed to Simplify
during the --suppress_redundant check. If the value is 1 or higher, a hyphen will be printed when
each invariant is passed to Simplify, and then replaced by a T if the invariant was redundant, F if it
was not found to be, and 7 if Simplify gave up because of a time limit. If the value is 2 or higher,
a < or > will also be printed for each invariant that is pushed onto or popped from from Simplify’s
assumption stack. This option is mainly intended for debugging purposes, but can also provide
something to watch when Simplify takes a long time. The default value is ‘0’.

DRAFT 4 May 2020

Chapter 6: Enhancing Daikon output 48

6.1.1.6 Splitter options

The configuration options in this section are used to customize the the behavior of splitters, which yield
conditional invariants and implications (see Section 6.2 [Conditional invariants|, page 53).

daikon.split.ContextSplitterFactory.granularity
Enumeration (integer). Specifies the granularity to use for callsite splitter processing. (That is, for
creating invariants for a method that are dependent on where the method was called from.) 0 is
line-level granularity; 1 is method-level granularity; 2 is class-level granularity. The default value is
‘17

daikon.split.PptSplitter.disable_splitting
Boolean. If true, the built-in splitting rules are disabled. The built-in rules look for implications
based on boolean return values and also when there are exactly two exit points from a method. The
default value is ‘false’.

daikon.split.PptSplitter.dummy_invariant_level
Integer. A value of zero indicates that Dummylnvariant objects should not be created. A value of
one indicates that dummy invariants should be created only when no suitable condition was found
in the regular output. A value of two indicates that dummy invariants should be created for each
splitting condition. The default value is ‘0’.

daikon.split.PptSplitter.split_bi_implications
Split bi-implications ("a <==> b") into two separate implications ("a ==> b" and "b ==> a"). The
default value is ‘false’.

daikon.split.PptSplitter.suppressSplitterErrors
When true, compilation errors during splitter file generation will not be reported to the user. The
default value is ‘true’.

daikon.split.SplitterFactory.compile_timeout
Positive integer. Specifies the Splitter compilation timeout, in seconds, after which the compilation
process is terminated and retried, on the assumption that it has hung. The default value is ‘20’.

daikon.split.SplitterFactory.compiler
String. Specifies which Java compiler is used to compile Splitters. This can be the full path
name or whatever is used on the command line. Uses the current classpath. The default value
is ‘javac -nowarn -source 8 -target 8 -classpath /usr/lib/jvm/java-1.8.0-openjdk-1.8.0.242.b08-
0.el7_7.x86-64/lib/tools.jar: /usr/lib/jvm/java-1.8.0-openjdk-1.8.0.242.b08-0.€]7_7.x86 64/ classes’.

daikon.split.SplitterFactory.delete_splitters_on_exit
Boolean. If true, the temporary Splitter files are deleted on exit. Set it to "false" if you are debugging
splitters. The default value is ‘true’.

daikon.split.SplitterlList.all_splitters
Boolean. Enables indiscriminate splitting (see Daikon manual, Section 6.2.2 [Indiscriminate split-
ting], page 55, for an explanation of this technique). The default value is ‘true’.

6.1.1.7 Debugging options

The configuration options in this section are used to cause extra output that is useful for debugging.

daikon.Debug.internal_check
When true, perform detailed internal checking. These are essentially additional, possibly costly assert
statements. The default value is ‘false’.

daikon.Debug.logDetail
Determines whether or not detailed info (such as from add_modified) is printed. The default value
is ‘false’.

DRAFT 4 May 2020

Chapter 6: Enhancing Daikon output 49

daikon.Debug.showTraceback
Determines whether or not traceback information is printed for each call to log. The default value
is ‘false’.

daikon.Debug.show_stack_trace
If true, show stack traces for errors such as file format errors. The default value is ‘false’.

6.1.1.8 General configuration options

This section lists miscellaneous configuration options for Daikon.

daikon.Daikon.calc_possible_invs
Boolean. Just print the total number of possible invariants and exit. The default value is ‘false’.

daikon.Daikon.guardNulls
If "always", then invariants are always guarded. If "never", then invariants are never guarded. If
"missing", then invariants are guarded only for variables that were missing ("can be missing") in
the dtrace (the observed executions). If "default", then use "missing" mode for Java output and
"never" mode otherwise.

Guarding means adding predicates that ensure that variables can be dereferenced. For instance, if a
can be null — that is, if a.b can be nonsensical — then the guarded version of

a.b ==
is
(a !'= null) -> (a.b == 5)

(To do: Some configuration option (maybe this one) should add guards for other reasons that lead
to nonsensical values (see Section 5.3 [Variable names|, page 20).)
The default value is ‘default’.

daikon.Daikon.output_conditionals
Boolean. Controls whether conditional program points are displayed. The default value is ‘true’.

daikon.Daikon.ppt_perc
Integer. Percentage of program points to process. All program points are sorted by name, and
all samples for the first ppt_perc program points are processed. A percentage of 100 matches all
program points. The default value is ‘100’.

daikon.Daikon.print_sample_totals
Boolean. Controls whether or not the total samples read and processed are printed at the end of
processing. The default value is ‘false’.

daikon.Daikon.progress_delay
The amount of time to wait between updates of the progress display, measured in milliseconds. A
value of -1 means do not print the progress display at all. The default value is ‘1000’

daikon.Daikon.progress_display_width
The number of columns of progress information to display. In many Unix shells, this can be set to an
appropriate value by --config_option daikon.Daikon.progress_display_width=$COLUMNS. The
default value is ‘80’

daikon.Daikon.quiet
Boolean. Controls whether or not processing information is printed out. Setting this variable to true
also automatically sets progress_delay to -1. The default value is ‘false’.

DRAFT 4 May 2020

Chapter 6: Enhancing Daikon output 50

daikon.Daikon.undo_opts
Boolean. Controls whether the Daikon optimizations (equality sets, suppressions) are undone at the
end to create a more complete set of invariants. Output does not include conditional program points,
implications, reflexive and partially reflexive invariants. The default value is ‘false’.

daikon.DynamicConstants.One0f _only
Boolean. Controls which invariants are created for variables that are constant for the entire run. If
true, create only OneOf invariants. If false, create all possible invariants.

Note that setting this to true only fails to create invariants between constants. Invariants between
constants and non-constants are created regardless.

A problem occurs with merging when this is turned on. If a var_info is constant at one child slice, but
not constant at the other child slice, interesting invariants may not be merged because they won’t
exist on the slice with the constant. This is thus currently defaulted to false. The default value is
‘false’.

daikon.DynamicConstants.use_dynamic_constant_optimization
Whether to use the dynamic constants optimization. This optimization doesn’t instantiate invariants
over constant variables (i.e., that that have only seen one value). When the variable receives a second
value, invariants are instantiated and are given the sample representing the previous constant value.
The default value is ‘true’.

daikon.FileI0.add_changed
Boolean. When false, set modbits to 1 iff the printed representation has changed. When true, set
modbits to 1 if the printed representation has changed; leave other modbits as is. The default value
is ‘true’.

daikon.FileIO.continue_after_file_exception
Boolean. When true, suppress exceptions related to file reading. This permits Daikon to continue
even if there is a malformed trace file. Use this with care: in general, it is better to fix the problem
that caused a bad trace file, rather than to suppress the exception. The default value is ‘false’.

daikon.FileIO.count_lines
Boolean. When false, don’t count the number of lines in the dtrace file before reading. This will
disable the percentage progress printout. The default value is ‘true’.

daikon.FileIO.dtrace_line_count
Long integer. If non-zero, this value will be used as the number of lines in (each) dtrace file input
for the purposes of the progress display, and the counting of the lines in the file will be suppressed.
The default value is ‘0.

daikon.FileI0.ignore_missing_enter
When true, just ignore exit ppts that don’t have a matching enter ppt rather than exiting with an
error. Unmatched exits can occur if only a portion of a dtrace file is processed. The default value is
‘false’.

daikon.FileIO.max_line_number
Integer. Maximum number of lines to read from the dtrace file. If 0, reads the entire file. The default
value is ‘0.

daikon.FileIO.read_samples_only
Boolean. When true, only read the samples, but don’t process them. Used to gather timing infor-
mation. The default value is ‘false’.

DRAFT 4 May 2020

Chapter 6: Enhancing Daikon output 51

daikon.FileIO.rm_stack_dups
If true, modified all ppt names to remove duplicate routine names within the ppt name. This is
used when a stack trace (of active methods) is used as the ppt name. The routine names must be
separated by vertical bars (|). The default value is ‘false’.

daikon.FileIO.unmatched_procedure_entries_quiet
Boolean. When true, don’t print a warning about unmatched procedure entries, which are ignored
by Daikon (unless the --nohierarchy command-line argument is provided). The default value is
‘false’.

daikon.FileIO.verbose_unmatched_procedure_entries
Boolean. If true, prints the unmatched procedure entries verbosely. The default value is ‘false’.

daikon.PptRelation.enable_object_user
Boolean. Controls whether the object-user relation is created in the variable hierarchy. The default
value is ‘false’.

daikon.PptSliceEquality.set_per_var
If true, create one equality set for each variable. This has the effect of turning the equality optimiza-
tion off, without actually removing the sets themselves (which are presumed to exist in many parts
of the code). The default value is ‘false’.

daikon.PptTopLevel.pairwise_implications
Boolean. If true, create implications for all pairwise combinations of conditions, and all pairwise
combinations of exit points. If false, create implications for only the first two conditions, and create
implications only if there are exactly two exit points. The default value is ‘false’.

daikon.PptTopLevel.remove_merged_invs
Remove invariants at lower program points when a matching invariant is created at a higher program
point. For experimental purposes only. The default value is ‘false’.

daikon.PrintInvariants.old_array_names
In the new decl format, print array names as ’a[]’ as opposed to ’a[..]” This creates names that are
more compatible with the old output. This option has no effect in the old decl format. The default
value is ‘true’.

daikon.PrintInvariants.print_all
If true, print all invariants without any filtering. The default value is ‘false’.

daikon.PrintInvariants.print_implementer_entry_ppts
If false, don’t print entry method program points for methods that override or implement another
method (i.e., entry program points that have a parent that is a method). Microsoft Code Contracts
does not allow contracts on such methods. The default value is ‘true’.

daikon.PrintInvariants.print_inv_class
Print invariant classname with invariants in output of format() method, normally used only for
debugging output rather than ordinary printing of invariants. The default value is ‘false’.

daikon.PrintInvariants.remove_post_vars
If true, remove as many variables as possible that need to be indicated as 'post’. Post variables
occur when the subscript for a derived variable with an orig sequence is not orig. For example:
orig(alpost(i)]) An equivalent expression involving only orig variables is substitued for the post
variable when one exists. The default value is ‘false’.

daikon.PrintInvariants.replace_prestate
This option must be given with "—format Java" option.

DRAFT 4 May 2020

Chapter 6: Enhancing Daikon output 52

Instead of outputting prestate expressions as "\old(E)" within an invariant, output a variable name
(e.g. ‘v1’). At the end of each program point, output the list of variable-to-expression mappings.
For example: with this option set to false, a program point might print like this:

foo.bar.Bar(int):::EXIT
\old(capacity) == sizeof (this.theArray)

With the option set to true, it would print like this:

foo.bar.Bar(int) :::EXIT
v0 == sizeof (this.theArray)
prestate assignment: vO=capacity

The default value is ‘true’.

daikon.PrintInvariants.static_const_infer
This enables a different way of treating static constant variables. They are not created into invariants
into slices. Instead, they are examined during print time. If a unary invariant contains a value which
matches the value of a static constant varible, the value will be replaced by the name of the variable,
"if it makes sense". For example, if there is a static constant variable a = 1. And if there exists an
invariant x <= 1, x <= a would be the result printed. The default value is ‘false’.

daikon.PrintInvariants.true_inv_cnt
If true, print the total number of true invariants. This includes invariants that are redundant and
would normally not be printed or even created due to optimizations. The default value is ‘false’.

daikon.ProglangType.convert_to_signed
If true, treat 32 bit values whose high bit is on, as a negative number (rather than as a 32 bit
unsigned). The default value is ‘false’.

daikon.VarInfo.constant_fields_simplify
If true, the treat static constants (such as MapQuick.GeoPoint. FACTOR) as fields within an object
rather than as a single name. Not correct, but used to obtain compatibility with VarInfoName. The
default value is ‘true’.

daikon.VarInfo.declared_type_comparability
If true, then variables are only considered comparable if they are declared with the same type. For
example, java.util.List is not comparable to java.util.ArrayList and float is not comparable to double.
This may miss valid invariants, but significant time can be saved and many variables with different
declared types are not comparable (e.g., java.util.Date and java.util. ArrayList). The default value is
‘true’.

daikon.chicory.DaikonVariableInfo.constant_infer
Enable experimental techniques on static constants. The default value is ‘false’.

daikon.suppress.NIS.enabled
Boolean. If true, enable non-instantiating suppressions. The default value is ‘true’.

daikon.suppress.NIS.hybrid_threshhold
Int. Less and equal to this number means use the falsified method in the hybrid method of processing
falsified invariants, while greater than this number means use the antecedent method. Empirical data
shows that number should not be more than 10000. The default value is ‘2500’.

daikon.suppress.NIS.skip_hashcode_type
Boolean. If true, skip variables of file rep type hashcode when creating invariants over constants in
the antecedent method. The default value is ‘true’.

DRAFT 4 May 2020

Chapter 6: Enhancing Daikon output 53

daikon.suppress.NIS.suppression_processor
Specifies the algorithm that NIS uses to process suppressions. Possible selections are '"HYBRID’,
"ANTECEDENT’, and ’FALSIFIED’. The default is the hybrid algorithm which uses the falsified al-
gorithm when only a small number of suppressions need to be processed and the antecedent algorithm
when a large number of suppressions are processed. The default value is ‘HYBRID'.

daikon.suppress.NIS.suppressor_list
Boolean. If true, use the specific list of suppressor related invariant prototypes when creating constant
invariants in the antecedent method. The default value is ‘true’.

6.2 Conditional invariants (disjunctions) and implications

Conditional invariants are invariants that are true only part of the time. For instance, consider the
absolute value procedure. Its postcondition is

if arg < 0
then return == -arg
else return == arg
The invariant return == -arg is a conditional invariant because it depends on the predicate arg < 0 being
true. An implication is a compound invariant that includes both the predicate and the conditional invariant
(also called the consequent); an example of an implication is arg < 0 ==> return == -arg.

Another type of implication is a context-sensitive invariant — a fact about method A that is true only
when A is called by method B, but not true in general about A. You can use the configuration option
daikon.split.ContextSplitterFactory.granularity to control creation of context-sensitive invariants.
Alternately, you can use implications to construct context-sensitive invariants: set a variable that depends
on the call site, then compute an implication whose predicate tests that variable. For an example, see the
paper Selecting, refining, and evaluating predicates for program analysis (http://plse.cs.washington.
edu/daikon/pubs/predicates-tr914-abstract.html).

Daikon must be supplied with the predicate for an implication. Daikon has certain built-in predicates
that it uses for finding conditional invariants; examples are which return statement was executed in a
procedure and whether a boolean procedure returns true or false. Additionally, Daikon can read predicates
from a file called a splitter info (.spinfo) file and find implications based on those predicates. The splitter
info file can be produced automatically, such as by static analysis of the program using the CreateSpinfo
and CreateSpinfoC programs (see Section 6.3.1 [Static analysis for splitters|, page 57) or by cluster analysis
of the traced values in the data trace file. Details of these techniques and usage guides can be found in
Section 6.3 [Enhancing conditional invariant detection|, page 57. Users can also create splitter info files
themselves or can augment automatically-created ones.

To detect conditional invariants and implications:
1. Create the splitter info file, either automatically or by hand.

2. Run Daikon with the .spinfo file as one of its arguments. (The order of arguments does not matter.)
For example,

java -cp $DAIKONDIR/daikon.jar daikon.Daikon Foo.decls Foo.spinfo Foo.dtrace

The term splitter comes from Daikon’s technique for detecting implications and conditional invariants.
For each predicate, Daikon creates two conditional program points — one for program executions that
satisfy the condition and one for those that don’t — and splits the data trace into two parts. Invariant
detection is then performed on the conditional program points (that is, the parts of the data trace)
separately and any invariants detected are reported as conditional invariants (as implications).

To be precise, we say that an invariant holds exclusively if it is discovered on one side of a split, and
its negation is discovered on the opposite side. Daikon creates conditional invariants whose predicates are

DRAFT 4 May 2020

http://plse.cs.washington.edu/daikon/pubs/predicates-tr914-abstract.html
http://plse.cs.washington.edu/daikon/pubs/predicates-tr914-abstract.html

Chapter 6: Enhancing Daikon output 54

invariants that hold exclusively on one side of a split, and whose consequents are invariants that hold on
that side of the split but not on the unsplit program point. If Daikon finds multiple exclusive conditions, it
will create biconditional (“if and only if”) invariants between the equivalent conditions. Within the context
of the program, each of the exclusive conditions is equivalent to the splitting condition. In particular, if
both the splitting condition and its negation are within the grammar of invariants that Daikon detects,
the splitting condition may appear as the predicate of the generated conditional invariants. On the other
hand, if other equivalent conditions are found, or if the splitting condition is not expressible in Daikon’s
grammar, it might not appear in the generated implications.

In some cases, the default policy of selecting predicates from Daikon’s output may be insufficient. For
instance, Daikon might not detect any invariant equivalent to the splitting condition, if the splitting
condition is sufficiently complex or application-specific. In such situations, Daikon can also use the splitting
condition itself, as what is called a dummy invariant. To use dummy invariants, set the configuration
option daikon.split.PptSplitter.dummy_invariant_level to a non-zero value (see Section 6.1.1 [List
of configuration options], page 44).

6.2.1 Splitter info file format

A splitter info file contains the conditions that Daikon should use to create conditional invariants. Each
section in the .spinfo file consists of a sequence of non-blank lines; sections are separated by blank
lines. There are two types of sections: program point sections and replacement sections. See Section 6.2.3
[Example splitter info file], page 55, for an example splitter info file.

6.2.1.1 Program point sections

Program point sections have a line specifying a program point name followed by lines specifying the
condition(s) associated with that program point, each condition on its own line. Additional information
about a condition may be specified on indented lines. For example, a typical entry is

PPT_NAME pptname
conditionl
condition2
DAIKON_FORMAT string
ESC_FORMAT string
condition3

pptname can be any string that matches a part of the desired program point name as printed in the .decls
file. In finding matching program points, Daikon uses the first program point that matches pptname.
Caution is necessary when dealing with method names that are prefixes of other method names. For
instance, if the class List has methods add and addAll, specifying ‘PPT_NAME List.add’ might select
either method, depending on which was encountered first. Instead writing ‘PPT_NAME List.add(’ will
match only the add method.

Each condition is a Java expression of boolean type. All variables that appear in the condition must
also appear in the declaration of the program point in the .decls file. (In other words, all the variables
must be in scope at the program point(s) where the Splitter is intended to operate.) The automatically
generated Splitter source code fails to compile (but Daikon proceeds without it) if a variable name in a
condition is not found at the matching program point.

An indented lines beginning with ‘DAIKON_FORMAT’, ‘JAVA_FORMAT’, ‘ESC_FORMAT’, or ‘SIMPLIFY_FORMAT’
specifies how to print the condition. These are optional; for any Daikon output format that is omitted,
the Java condition itself is used. The alternate printed representation is used when the splitting condition
is used as a dummy invariant; see configuration option daikon.split.PptSplitter.dummy_invariant_
level.

DRAFT 4 May 2020

Chapter 6: Enhancing Daikon output 55

6.2.1.2 Replacement sections

Ordinarily, a splitting condition may not invoke user-defined methods, because when Daikon reads data
trace files, it does not have access to the program source. A replace section of the splitter info file can
specify the bodies of methods, permitting conditions to invoke those methods. The format is as follows:

REPLACE
procedurel
replacement1
procedure?2
replacement2

where replacementi is a Java expression for the body of procedurei. In each condition, Daikon replaces
procedure calls by their replacements. A replace section may appear anywhere in the splitter info file.

6.2.2 Indiscriminate splitting

FEach condition in an .spinfo is associated with a program point. The condition can be used at only
that program point by placing the following line in a file that is passed to Daikon via the --config flag
(see Section 4.4 [Daikon configuration options|, page 16):

daikon.split.SplitterList.all_splitters = false

The default, called indiscriminate splitting, is to use every condition at every program point, regardless
of where in the .spinfo file the condition appeared.

The advantage of indiscriminate splitting is that a condition that is useful at one program point may
also be useful at another — if the same variables are in scope or other variables of the same name are in
scope. The disadvantage of indiscriminate splitting is that it slows Daikon down.

Daikon uses a condition only where it can be used. For example, the condition myArray.length == x is
applicable only at program points that have variables named myArray and x. To see warnings about places
a splitting condition cannot be used (reported as failure to compile splitters at those locations), place the
following line in a file that is passed to Daikon via the --config flag (see Section 4.4 [Daikon configuration
options|, page 16):

daikon.split.SplitterList.all_splitters_errors = true

6.2.3 Example splitter info file

Below is an implementation of a simple Queue for positive integers and a corresponding .spinfo file.
The splitter info file is like the one that CreateSpinfo would create for that class, but also demonstrates
some other features.

6.2.3.1 Example class

class simpleStack {

private int[] myArray;
private int currentSize;

public simpleStack(int capacity) {
myArray = new int[capacity];
currentSize = 0;

}

/** Adds an element to the back of the stack, if the stack is
* not full.
* Returns true if this succeeds, false otherwise. */

DRAFT 4 May 2020

Chapter 6: Enhancing Daikon output 56

public String push(int x) {
if (!'isFull() && x >= 0) {
myArray [currentSize] = x;
currentSize++;
return true;
} else {
return false;
}
}

/** Returns the most recently inserted stack element.
* Returns -1 if the stack is empty. */
public int pop() {
if ('isEmpty ()) {
currentSize—-;
return myArray[currentSize];
} else {
return -1;
}
}

/** Returns true if the stack is empty, false otherwise. */
private boolean isEmpty() {
return (currentSize == 0);

}

/** Returns true if the stack is full, false otherwise. */
private boolean isFull() {
return (currentSize == myArray.length);

}

6.2.3.2 Resulting .spinfo file

REPLACE

isFull(Q)

currentSize == myArray.length
isEmpty ()

currentSize ==

PPT_NAME simpleStack.push

1isFull() && x >= 0
DAIKON_FORMAT !isFull() and x >= 0
SIMPLIFY_FORMAT (AND (NOT (isFull this)) (>= x 0))

PPT_NAME simpleStack.pop
!isEmpty ()

PPT_NAME simpleStack.isFull
currentSize == myArray.length - 1

PPT_NAME simpleStack.isEmpty
currentSize ==

DRAFT 4 May 2020

Chapter 6: Enhancing Daikon output 57

6.3 Enhancing conditional invariant detection

The built-in mechanisms (see Section 6.2 [Conditional invariants|, page 53) have limitations in the
invariants they can find. By supplying splitting conditions to Daikon via a splitter info file, the user can
infer more conditional invariants. To ease this task, there are methods to automatically create splitter info
files for use by Daikon.

6.3.1 Static analysis for splitters

In static analysis, all boolean statements in the program source are extracted and used as splitting
conditions. The assumption is that conditions that are explicitly tested in the program are likely to affect
the program’s behavior and could lead to useful conditional invariants. The simple heuristic of using these
conditional statements as predicates for conditional invariant detection is often quite effective.

6.3.1.1 Static analysis of Java for splitters

The CreateSpinfo program takes Java source code as input and creates a splitter info file for each Java
file; for instance,

java -cp $DAIKONDIR/daikon.jar daikon.tools.jtb.CreateSpinfo Foo.java Bar.java

creates the splitter info files Foo.spinfo and Bar.spinfo. Given an —~o filename argument, CreateSpinfo
puts all the splitters in the specified file instead. The resulting splitter info file(s) contains each boolean
expression that appears in the source code.

If you get an error such as

jtb.ParseException: Encountered ";" at line 253, column 8.
Was expecting one of: "abstract"

then you may have encountered a bug in the JTB library on which CreateSpinfo is built. It does not
permit empty declarations in a class body. Remove the extra semicolon in your Java file (at the indicated
position) and re-rerun CreateSpinfo.

6.3.1.2 Static analysis of C for splitters

The CreateSpinfoC program performs the same function for C source code as CreateSpinfoC does for
Java. CreateSpinfoC can only be run on postprocessed source files—that is, source files contain no CPP
commands. CPP commands are lines starting with ‘#’, such as ‘#include’. To expand CPP commands into
legal C, run either cpp -P or gcc -P -E. For instance, here is how you could use CreateSpinfoC:

cpp -P foo.c foo.c-expanded

cpp -P bar.c bar.c-expanded

java -cp $DAIKONDIR/daikon.jar daikon.tools.jtb.CreateSpinfoC \
foo.c-expanded bar.c-expanded

WARNING: The names produced by CreateSpinfoC sometimes differ from the names produced by Kvasir.
For example, suppose you have a C file that contains a function ‘foo’. Then CreateSpinfoC may create a
.spinfo file that mentions a program point named ‘std.foo’, whereas Kvasir creates a .dtrace file that
mentions a program point named ‘. .foo’. Such a mismatch will cause Daikon to produce no conditional
invariants for the given program point. This is a bug that needs to be fixed! (Patches are welcome.) In the
meanwhile, you can edit the generated .spinfo file to conform to the .dtrace file’s naming conventions.

If you get an error such as

. Lexical error at line 5, column 1.
Encountered: "#" (35), after : ""

then you forgot to run CPP before running CreateSpinfoC.
If you get an error such as

DRAFT 4 May 2020

Chapter 6: Enhancing Daikon output 58

CreateSpinfoC encountered errors during parse.
Encountered "__extension__ typedef struct {

then your program uses non-standard C syntax. The ‘__extension__’ keyword is supported only by the
gcc compiler, and isn’t handled by the CreateSpinfoC program. You could extend the CreateSpinfoC
program to handle non-standard gcc extensions, or you could remove non-standard gcc extensions from
your program. The extensions might also result from standard libraries rather than your own program —
removing a directives such as ‘#include <stdio.h>’ when preprocessing may also resolve the problem.

6.3.2 Cluster analysis for splitters

Cluster analysis is a statistical method that finds groups or clusters in data. The clusters may indicate
conditional properties in the program. The cluster analysis mechanism finds clusters in the data trace file,
infers invariants over any clusters that it finds, and writes these invariants into a splitter info file. Then,
you supply the splitter info file to Daikon in order to infer conditional invariants.

To find splitting conditions using cluster analysis, run the runcluster.pl program (found in the
$DAIKONDIR/scripts directory) in the following way:

runcluster.pl [options] dtrace_file ... decls_files ...

The options are:

-a ALG

-—algorithm ALG
ALG specifies a clustering algorithm. Current options are ‘km’ (for kmeans), ‘hierarchical’, and
‘xm’ (for xmeans). The default is ‘xm’.

-k The number of clusters to use (for algorithms which require this input, which is everything except
xmeans). The default is 4.

--keep
Don’t delete the temporary files created by the clustering process. This is a debugging flag.

The runcluster.pl script currently supports three clustering programs. They are implementations of
the kmeans algorithm, hierarchical clustering, and the xmeans algorithm (kmeans algorithm with efficient
discovery of the number of clusters). The kmeans and hierarchical clustering tools are provided in the
Daikon distribution. The xmeans code and executable are publicly available at http://www.cs.cmu.edu/
“dpelleg/kmeans.html (fill in the license form and mail it in).

6.3.3 Random selection for splitters

Random selection can create representative samples of a data set with the added benefit of finding
conditional properties and eliminating outliers. Given trace data, the TraceSelect tool creates several
small subsets of the data by randomly selecting parts of the original trace file. Any invariant that is
discovered in the smaller samples but not found over the entire data is a conditional invariant.

To find splitting conditions using random selection, run the daikon.tools.TraceSelect program in the
following way:

java -cp $DAIKONDIR/daikon.jar daikon.tools.TraceSelect \
num_reps sample_size [options] \
dtrace_file decls_files ... [daikon_options]

num_reps is the number of subsets to create, and sample_size is the number of invocations to collect for
each method.

The daikon_options are the same options that can be provided to the daikon.Daikon program.
The options for TraceSelect are:

DRAFT 4 May 2020

http://www.cs.cmu.edu/~dpelleg/kmeans.html
http://www.cs.cmu.edu/~dpelleg/kmeans.html

Chapter 6: Enhancing Daikon output 59

-NOCLEAN
Don’t delete the temporary trace samples created by the random selection process. This can help for
debugging or for using the tool solely to create trace samples instead of calculating invariants over
the samples.

-INCLUDE_UNRETURNED
Allows random selection to choose method invocations that entered the method successfully but did
not exit normally; either from a thrown Exception or abnormal termination.

-DO_DIFFS
Creates an .spinfo file for generating conditional invariants and implications by reporting the in-
variants that appear in at least one of the samples but not over the entire data set.

6.4 Dynamic abstract type inference (DynComp)

Abstract types group variables that are used for related purposes in a program. For example, suppose
that some int variables in your program are array indices, and other int variables represent time. Even
though these variables have the same type (int) in the programming language, they have different abstract

types.

Abstract types can be provided as input to Daikon, so that it only infers invariants between values of
the same abstract type. This has two benefits. First, it improves Daikon’s performance, often by over an
order of magnitude, because it reduces the number of potential invariants that must be checked. Second, it
reduces spurious output caused by invariants over unrelated variables. You are strongly recommended to
supply abstract types when running Daikon; Daikon does not produce satisfactory output without abstract
type information.

Abstract type inference is performed by the front-ends, before Daikon runs. The Daikon distribution
includes three tools that infer abstract types (also called comparability types) from program executions.

e The Java DynComp tool produces a comparability file that must then be supplied to the Chicory Java
front-end. For examples of using DynComp with Java programs, see Section 3.1 [Detecting invariants
in Java programs|, page 4. For full details about the DynComp tool for Java, see Section 7.2 [DynComp
for Java], page 66.

e The Kvasir front-end for C/C++ binaries by default uses a DynComp mode in which it produces a sep-
arate .decls file containing comparability information, which must be supplied to Daikon along with
the .dtrace file. For examples of using DynComp with C programs, see Section 3.2.1 [C examples],
page 8. For full details about the DynComp tool for C/C++, see Section 7.3.3 [DynComp for C/C++],
page 78.

e The Celeriac front-end for .NET programs can compute variable comparability. It does so statically
by examining the program text, rather than dynamically by running the program as DynComp does.
For full details about variable comparability in Celeriac, see https://github . com/codespecs/
daikon-dot-net-front-end.

6.5 Loop invariants

Daikon does not by default output loop invariants. Daikon can detect invariants at any location where
it is provided with variable values, but currently Daikon’s front ends do not supply Daikon with variable
values at loop heads.

You could extend a front end to output more variable values, or you could write a new front end.

Alternately, here is a way to use the current front ends to produce loop invariants. This workaround
requires you to change your program, but it requires no change to Daikon or its front ends.

DRAFT 4 May 2020

https://github.com/codespecs/daikon-dot-net-front-end
https://github.com/codespecs/daikon-dot-net-front-end

Chapter 6: Enhancing Daikon output 60

At the top of a loop (or at any other location in the program at which you would like to obtain invariants),
insert a call to a dummy procedure that does no work but returns immediately. Pass, as arguments to
the dummy procedure, all variables of interest (including local variables). Daikon will produce (identical)
preconditions and postconditions for the dummy procedure; these are properties that held at the call site.

For instance, you might change the original code

public void calculate(int x) {
int tmp = O;
while (x > 0) {
// you desire to compute an invariant here
tmp=tmp+x;
x=x-1;
}
}
into
public void calculate(int x) {
int tmp = 0;
while (x > 0) {
calculate_loophead(x, tmp);
tmp=tmp+x;
x=x-1;
}
}

// dummy procedure
public void calculate_loophead(int x, int tmp) {
}

DRAFT 4 May 2020

Chapter 7: Front ends (instrumentation) 61

7 Front ends (instrumentation)

The Daikon invariant detector is a machine learning tool that finds patterns (invariants) in data. That
data can come from any source, but Daikon is typically used to find invariants over variable values in
running programs. A front end is a tool that converts data from some other format into Daikon’s input
format. The most common type of front end is an instrumenter, which causes your program to output a
.dtrace file that Daikon can process, or that you can process (see Section “Reading dtrace files” in Daikon
Developer Manual).

This chapter describes several front ends (instrumenters) that are part of Daikon. It is relatively easy to
build your own front end, if these do not serve your purpose; we are aware of a number of users who have
done so. For more information about building a new front end, see Section “New front ends” in Daikon
Developer Manual.

7.1 Java front end Chicory

The Daikon front end for Java, named Chicory, executes Java programs, creates data trace (.dtrace)
files, and optionally runs Daikon on them. Chicory is named after the chicory plant, whose root is sometimes
used as a coffee substitute or flavor enhancer.

While Daikon can be run using only the Chicory front end, it is highly recommend that DynComp be
run prior to Chicory. See Section 7.2 [DynComp for Javal, page 66 for more details.

To use Chicory, run your program as you normally would, but replace the java command with java
daikon.Chicory. For instance, if you usually run

java -cp myclasspath mypackage.MyClass argl arg2 arg3
then instead you would run

java -cp myclasspath:$DAIKONDIR/daikon.jar daikon.Chicory \
mypackage .MyClass argl arg2 arg3

This runs your program and creates file MyClass.dtrace in the current directory. Furthermore, a single
command can both create a trace file and run Daikon:

java -cp myclasspath:$DAIKONDIR/daikon. jar daikon.Chicory \
--daikon mypackage.MyClass argl arg2 arg3

See below for more options.

That’s all there is to it! Since Chicory instruments class files directly as they are loaded into Java, you do
not need to perform separate instrumentation and recompilation steps. However, you should compile your
program with debugging information enabled (the -g command-line switch to javac); otherwise, Chicory
uses the names arg0, argl, ... as the names of method arguments.

Chicory must be run in a version 8 (or later) JVM, but it is backward-compatible with older versions of
Java code. Chicory can process class files from any version of Java.

7.1.1 Chicory options

Chicory is invoked as follows:

java -cp $DAIKONDIR/daikon.jar daikon.Chicory \
chicory-args classname args

where
java classname args
is a valid invocation of Java.

This section lists the optional command-line arguments to Chicory, which appear before the classname
on the Chicory command line.

DRAFT 4 May 2020

Chapter 7: Front ends (instrumentation) 62

7.1.1.1 Program points in Chicory output
This section lists options that control which program points appear in Chicory’s output.

--ppt-select-pattern=regexp
Only produce trace output for classes/procedures/program points whose names match the given
regular expression. This option may be supplied multiple times, and may be used in conjunction
with —-ppt-omit-pattern.
When this switch is supplied, filtering occurs in the following way: for each program point, Chicory
checks the fully qualified class name, the method name, and the the program point name against
each regexp that was supplied. If any of these match, then the program point is included in the
instrumentation.

Suppose that method bar is defined only in class C. Then to traces only bar, you could match the
method name (in any class) with regular expression ‘bar$’, or you could match the program point
name with ‘C\.bar\ (.

java —-cp $DAIKONDIR/daikon.jar daikon.Chicory \
--ppt-select-pattern=’bar$’

java -cp $DAIKONDIR/daikon.jar daikon.Chicory \
--ppt-select-pattern="C\.bar\(’

--ppt-omit-pattern=regexp
Do not produce data trace output for classes/procedures/program points whose names match the
given regular expression. This reduces the size of the data trace file and also may make the instru-
mented program run faster, since it need not output those variables.

This option works just like —~—ppt-select-pattern does, except that matching program points are
excluded, not included.

The --ppt-omit-pattern argument may be supplied multiple times, in order to specify multiple
omitting criteria. A program point is omitted if its fully qualified class, fully qualified procedure
name, or complete program point name exactly matches one of the omitting criteria. A regular
expression matches if it matches any portion of the program point name. Note that currently only
classes are matched, not each full program point name. Thus, either all of a class’s methods are
traced, or none of them are.

Here are examples of how to avoid detecting invariants over various parts of your program.

e omit a whole package:
java -cp $DAIKONDIR/daikon.jar daikon.Chicory \
’--ppt-omit-pattern="junit\.’ ...
java -cp $DAIKONDIR/daikon.jar daikon.Chicory \
’--ppt-omit-pattern="daikon\.util\..*’ ...
e omit a single class:
java -cp $DAIKONDIR/daikon.jar daikon.Chicory \
’--ppt-omit-pattern=HashSetLinear\$HslIterator’ ...
e omit a single method:
java -cp $DAIKONDIR/daikon.jar daikon.Chicory \
’—-ppt-omit-pattern=StackAr.topAndPop()’ ...
e omit a single program point:
java -cp $DAIKONDIR/daikon.jar daikon.Chicory \
’—-ppt-omit-pattern=StackAr.<init>(int):::EXIT33’ ...

--sample-start=sample-cnt
When this option is chosen, Chicory will record each program point until that program point has
been executed sample-cnt times. Chicory will then begin sampling. Sampling starts at 10% and

DRAFT 4 May 2020

Chapter 7: Front ends (instrumentation) 63

decreases by a factor of 10 each time another sample-cnt samples have been recorded. If sample-cnt
is 0, then all calls will be recorded.

--boot-classes=regex
Chicory treats classes that match the regex as boot classes. Such classes are not instrumented.

--instrument-clinit
Causes Chicory to output empty dtrace records when static initializers are entered and exited. This
is useful for clients that use Chicory to trace method entry and exit.

7.1.1.2 Variables in Chicory output

This section lists options that control which variables appear in Chicory’s output.

--nesting-depth=n
Depth to which to examine structure components (default 2). This parameter determines which
variables the front end causes to be output at runtime. For instance, suppose that a program
contained the following data structures and a method foo:

class A {
int x;
B b;

}

class B {
int y;
int z;

}

class Link {
int val;
Link next;

}

void foo(A myA, Link myList) { ... }
Consider what variables would be output at the entry to method foo:

e If depth=0, only the identities (hash codes) of myA and myList would be examined; those
variables could be determined to be equal or not equal to other variables.

e If depth=1, then in addition to the above, myA.x, the identity of myA.b, myList.val, and the
identity of myList.next would be examined.

o If depth=2, then, in addition to the above, also myA.b.y, myA.b.z, the identity of
myList.next.next, and myList.next.val would be examined.

Values whose value is undefined are not examined. For instance, if myA is null on a particular
execution of a program point, then myA.b is not accessed on that execution regardless of the depth
parameter. That variable appears in the .dtrace file, but its value is marked as nonsensical.

--omit-var=regex
Do not include variables whose name matches the regular expression. Variables will be omitted from
each program point in which they appear.

--std-visibility
When this switch is on, Chicory will traverse exactly those fields that are visible from a given program

point. For instance, only the public fields of class packl.B will be included at a program point for
class pack2.A whether or not packl.B is instrumented. By default, Chicory outputs all fields in

DRAFT 4 May 2020

Chapter 7: Front ends (instrumentation) 64

instrumented classes (even those that would not be accessible in Java code at the given program
point) and outputs no fields from uninstrumented classes (even those that are accessible). When you
supply --std-visibility, consider also supplying —-purity-file to enrich the set of expressions
in Daikon’s output.

—--purity-file=pure-methods-file
File pure-methods-file lists the pure methods (sometimes called observer methods; one type of ob-
server is getter methods) in a Java program. Pure methods have no externally side effects, such
as setting variables or producing output. For example, most implementations of the hashCode (),
toString(), and equals() methods are pure.

For each variable, Chicory adds to the trace new fields that represent invoking each pure method
on the variable. (Currently, Chicory does so only for pure methods that take no parameters, and
obviously this mechanism is only useful for methods that return a value: a pure method that returns
no value does nothing!)

Here is an example:

class Point {
private int x, y;
public int radiusSquared() {
return x*x + y*y;
}
}

If radiusSquared() has been specified as pure, then for each point p, Chicory will output the vari-
ables p.x, p.y, and p.radiusSquared (). Use of pure methods can improve the Daikon output, since
they represent information that the programmer considered important but that is not necessarily
stored in a variable.

Invoking a pure method at any time in an application should not change the application’s behavior.
If a non-pure method is listed in a purity file, then application behavior can change. Chicory does
not verify the purity of methods listed in the purity file.

The purity file lists a set of methods, one per line. The format of each method is given by the Sun
JDK API:

The string is formatted as the method access modifiers, if any, followed by the method return
type, followed by a space, followed by the class declaring the method, followed by a period,
followed by the method name, followed by a parenthesized, comma-separated list of the method’s
formal parameter types. If the method throws checked exceptions, the parameter list is followed
by a space, followed by the word throws followed by a comma-separated list of the thrown
exception types. For example:

public boolean java.lang.Object.equals(java.lang.0Object)

The access modifiers are placed in canonical order as specified by "The Java Language Spec-
ification". This is public, protected or private first, and then other modifiers in the following
order: abstract, static, final, synchronized native.

By convention, pure-methods-file has the suffix .pure. If pure-methods-file is specified as a
relative (not absolute) file name, it is searched for in the configuration directory specified via
--configs=directory, or in the current directory if no configuration directory is specified.

One way to create a .pure file is to run the Purity Analysis Kit (http://jppa.sourceforge.net/
). If you supply the --daikon-purity-file when running the Purity Analysis Kit, it writes a file
that can be supplied to Chicory.

DRAFT 4 May 2020

http://jppa.sourceforge.net/
http://jppa.sourceforge.net/

Chapter 7: Front ends (instrumentation) 65

7.1.1.3 Chicory miscellaneous options

This section lists all other Chicory options — that is, all options that do not control which program
points and variables appear in Chicory’s output.

--help
Print a help message.

--debug
Produce debugging information. For other debugging options, run Chicory with the --help option.

-—-dtrace-file=filename
Specifies the default name for the trace output (.dtrace) file. If this is not specified, then the value
of the DTRACEFILE environment variable (at the time the instrumented program runs) is used. If
that environment variable is not used, then the default is ./CLASSNAME.dtrace.

If the DTRACEAPPEND environment variable is set to any value, the .dtrace file will be appended to
instead of overwritten. Compressed data trace files may not be appended to. In some cases you may
find a single large data trace file more convenient; in other cases, a collection of smaller data trace
files may give you more control over which subsets of runs to invoke Daikon on.

—--comparability-file=filename
This option specifies a declaration file (see Section “Declarations” in Daikon Developer Manual) that
contains comparability information. This information will be incorporated in the output of Chicory.
Any variables not included in the comparability file will have their comparability set so that they
are comparable to all other variables of the same type. The DynComp tool is a common source for
such a file (see Section 7.2 [DynComp for Javal, page 66 and Section 7.3.3 [DynComp for C/C++],
page 78).

--output-dir=directory
Write the .dtrace trace output file to the specified directory. The default is the current directory.

—-—config-dir=directory
Chicory will use this location to search for configuration files. Currently, this only includes *.pure
files.

—--daikon
After creating a data trace (.dtrace) file, run Daikon on it. To specify arguments to Daikon use
the --daikon-args option. Also see the -—daikon-online option.

This option supplies Daikon with a single trace from one execution of your program. By contrast to
this option (and --daikon-online), if you invoke Daikon from the command line, you can supply
Daikon with as many trace files as you wish.

If the program that Chicory is tracing aborts with an error, then Chicory does not run Daikon, but
prints a message such as “Warning: Did not run Daikon because target exited with 1 status”.

-—-daikon-online
This option is like ——daikon, except that no .dtrace data trace file is produced. Instead, Chicory
sends trace information over a socket to Daikon, which processes the information incrementally
(“online”), as Chicory produces it.

Just like with the --daikon option, Daikon is only given a single trace from one execution of your
program.

The Kvasir front end also supports online execution, via use of (normal or named) Linux pipes (see
Section 7.3.7 [Online execution], page 89).

--daikon-args=arguments
Specifies arguments to be passed to Daikon if the ——~daikon or --daikon-online options are used.

DRAFT 4 May 2020

Chapter 7: Front ends (instrumentation) 66

—--premain=path
Specifies the absolute pathname to the ChicoryPremain. jar file. Chicory requires this jar file in
order to execute. By default Chicory looks for the jar file in the classpath and in $DAIKONDIR/java
(where DAIKONDIR is the complete installation of Daikon).

Chicory can also use the daikon. jar file for this purpose. If it doesn’t find ChicoryPremain. jar
above, it will use daikon. jar itself (if a file named daikon.jar appears in the classpath). If the
Daikon jar file is not named daikon. jar, you can use this switch to specify its name. For example:

—-premain=C:\1lib\daikon-5.8.2.jar

--heap-size=max_heap
Specifies the maximum size, in bytes, of the memory allocation pool for the target program. Also
applies to Daikon, if the ——daikon command-line argument is given. The size is specified in the same
manner as the ——Xmx switch to java; for example: —~heap-size=2048m.

7.1.2 Static fields (global variables)

Chicory (Daikon’s front end for Java) outputs the values of static fields in the current class, but not in
other classes. That means that Daikon cannot report properties over static fields in other classes, because
it never sees their values. (By contrast, Kvasir (see Section 7.3 [Kvasir|, page 73) supplies the values of
C/C++ global variables to Daikon.)

If you need Daikon to include all static variables when processing each class, then ask the maintainers
to add that feature to Chicory (or work with them to implement the enhancement). In the meanwhile,
here are two workarounds.

1. Add a static field whose type is the class containing the fields of interest. You don’t have to ever
assign to the new field. A disadvantage of this approach is that it gives you properties over the global
variables as observed by each class (which might be different).

2. At the beginning and end of each method, add a call to a dummy method that has access to all the
globals (via adding the field mentioned above). This produces a single formula that is valid for all
global variables at all times.

7.1.3 Troubleshooting Chicory

A message like
Chicory warning: ClassFile: ... - classfile version (49) is out of date and may not be prc

means that your program uses an old classfile format that is missing information that Chicory uses during
instrumentation. Chicory might work properly, or it might not. You can eliminate the warning by re-
compiling your program, using a -target command-line argument for a more recent version of Java. (In
the example above, classfile version 49 corresponds to Java 5, which was released in 2004; Java 6 was
released in 2006, and Java 8 was released in 2014.)

7.2 DynComp dynamic comparability (abstract type) analysis for Java

While Daikon can be run using only the Chicory front end, it is highly recommend that DynComp be
run prior to Chicory. The DynComp dynamic comparability analysis tool performs dynamic type inference
to group variables at each program point into comparability sets (see Section “Program point declarations”
in Daikon Developer Manual for the file representation of these sets). All variables in each comparability
set belong to the same “abstract type” of data that the programmer likely intended to represent, which is
a richer set of types than the few basic declared types (e.g., int, float) provided by the language.

Without comparability information, Daikon attempts to find invariants over all pairs (and sometimes
triples) of variables present at every program point. This can lead to two negative consequences: First, it

DRAFT 4 May 2020

Chapter 7: Front ends (instrumentation) 67

may take lots of time and memory to infer all of these invariants, especially when there are many global or
derived variables present. Second, many of those invariants are true but meaningless because they relate
variables which conceptually represent different types (e.g., an invariant such as winterDays < year is true
but meaningless because days and years are not comparable).

Consider the example below:

public class Year {
public static void main(String[] args) {
int year = 2005;
int winterDays = 58;
int summerDays = 307;
compute(year, winterDays, summerDays);

}

public static int compute(int yr, int d1, int d2) {
if (0 !'= yr % 4)
return dl + d2;
else
return d1 + d2 + 1;

}

The three variables in main() all have the same Java representation type, int, but two of them hold
related quantities (numbers of days), as can be determined by the fact that they interact when the program
adds them, whereas the other contains a conceptually distinct quantity (a year). The abstract types “day”
and “year” are both represented as int, but DynComp can differentiate them with its dynamic analysis.
For example, DynComp can infer that winterDays and summerDays are comparable (belong to the same
abstract type) because the program adds their values together within the compute() function.

Without comparability information, Daikon attempts to find invariants over all pairs (and sometimes
triples) of variables present at every program point. This can lead to two negative consequences: First, it
may take lots of time and memory to infer all of these invariants, especially when there are many global or
derived variables present. Second, many of those invariants are true but meaningless because they relate
variables which conceptually represent different types (e.g., an invariant such as winterDays < year is true
but meaningless because days and years are not comparable).

To use DynComp, run your program as you normally would, but replace the java command with java
daikon.DynComp. For instance, if you usually run

java —cp myclasspath mypackage.MyClass argl arg2 arg3
then instead you would run
java -cp myclasspath:$DAIKONDIR/daikon.jar daikon.DynComp mypackage.MyClass argl arg2 arg?

This runs your program and creates the file MyClass.decls-DynComp in the current directory. The
.decls-DynComp file may be passed to Chicory, as described in Section 3.1 [Detecting invariants in Java
programs|, page 4.

java -cp $DAIKONDIR/daikon.jar daikon.Chicory \
—--comparability-file=MyClass.decls-DynComp \
mypackage .MyClass argl arg2 arg3

See below for more options.
Here is part of a sample .decls-DynComp file generated by running DynComp on the example above:

DECLARE
Year.compute(int, int, int):::ENTER

DRAFT 4 May 2020

Chapter

7: Front ends (instrumentation)

yr
int # isParam=true
int

3

di

int # isParam=true
int

2

d2

int # isParam=true
int

2

DECLARE

Year.compute(int, int, int):::EXIT11

yr
int # isParam=true
int

3

di

int # isParam=true
int

2

d2

int # isParam=true
int

2

return

int

int

2

68

The declaration file format is described in Section “Program point declarations” in Daikon Developer

Manual.

You can cause DynComp to create two additional representations of the comparability information.

Given the option ——comparability-file=filename, DynComp outputs comparability sets as sets. The

above .decls-DynComp output corresponds to the following comparability-file output:

Daikon Variable sets for Year.compute(int yr, int d1l, int d2) enter
[2] [daikon.chicory.ParameterInfo:d1] [daikon.chicory.ParameterInfo:d2]
[1] [daikon.chicory.ParameterInfo:yr]

Daikon Variable sets for Year.compute(int yr, int dl, int d2) exit
[3] [daikon.chicory.ParameterInfo:dl, daikon.chicory.ParameterInfo:

d2, daikon.chicory.ReturnInfo:return]

[1] [daikon.chicory.ParameterInfo:yr]

Given the option --trace-file=filename, DynComp outputs comparability sets as trees, structured
such that each variable in the tree has interacted with its children. The lack of a parent-child relation-
ship between two variables in a set does not imply anything about whether they interacted. The above

.decls-DynComp output corresponds to the following trace-file output:

Daikon Traced Tree for Year.compute(int yr, int d1, int d2) enter

daikon.chicory.ParameterInfo:dl

DRAFT

4 May 2020

Chapter 7: Front ends (instrumentation) 69

--daikon.chicory.ParameterInfo:d2 ()

daikon.chicory.ParameterInfo:yr

Daikon Traced Tree for Year.compute(int yr, int d1l, int d2) exit
daikon.chicory.ParameterInfo:dl
--daikon.chicory.ParameterInfo:d2 (Year:compute(), 11)
--daikon.chicory.ReturnInfo:return (Year:compute(), 11)

daikon.chicory.ParameterInfo yr

The file here shows that d1, d2, and the return value of the compute method are in the same comparability
set; this is correct, as they are all of the abstract type “days”. The variable yr is in its own comparability
set; it has abstract type “year”, and so is not comparable to the other variables. In addition, the structure
of the [d1, d2, return] set shows that at some point, d1 interacted with d2, and that d2 interacted with
return. The absence of a d1 -- return edge does not imply that d1 and return never interacted directly.

In addition, non-root nodes in the trace trees can indicate a list of class names, method names, and line
numbers at which values interacted, resulting in comparability between the preceding child node and its
parent. In the above example, d1 interacted with d2 on line 11 of the compute method of the Year class.

Duplicate values in this list represent the results of separate calls to another method which each of the
relevant variables. For example, if we modify the sample to use global variables instead of locals and add
an additional call to compute:

public class Year2 {

static int year = 2005;

static int winterDays = 58;

static int summerDays = 307;

static int schoolDays 180;

static int breakDays = 185;

public static void main(String[] args) {
compute(year, winterDays, summerDays);
compute (year, schoolDays, breakDays) ;

}

public static int compute(int yr, int d1, int d2) {
if (0 !'= yr % 4)
return d1 + d2;
else
return d1 + d2 + 1;

}
then for compute we might see this output:

DynComp Traced Tree for Year2.compute(int yr, int dil, int d2) exit
daikon.chicory.FieldInfo:Year2.schoolDays
--daikon.chicory.FieldInfo:Year2.breakDays (Year2:compute(), 14)
--daikon.chicory.ParameterInfo:dl (Year2:compute(), 14)
----daikon.chicory.FieldInfo:Year2.winterDays (Year2:compute(), 14)
—————— daikon.chicory.FieldInfo:Year2.summerDays (Year2:compute(), 14)
—————— daikon.chicory.ParameterInfo:d2 (Year2:compute(), 14)

------ daikon.chicory.ReturnInfo:return (Year2:compute(), 14)

DRAFT 4 May 2020

Chapter 7: Front ends (instrumentation) 70

Empty lists indicate that no non-assignment interactions occurred in the series of interactions connecting
the two variables.

Elements of these lists are essentially parts of stack traces. The maximum number of stack trace levels
displayed is set by -—trace-line-depth, which is equal to 1 by default.

For these files; DynComp also has a --abridged-vars option that replaces text like
daikon.chicory.ParameterInfo:d2 with text like Parameter d2 in the comparability-file and
trace-file. It writes this instead of daikon.chicory.ThisObjInfo:this; and return instead of
daikon.chicory.ReturnInfo:return. This option is off by default, but can be turned on with
--abridged-vars.

7.2.1 Instrumenting the JDK with DynComp

If you did not already do so when installing Daikon (see Chapter 2 [Installing Daikon], page 2), follow
the instructions here to build an instrumented copy of the JDK. Use the following command:

make -C $DAIKONDIR/java dcomp_rt.jar

Either the JAVA_HOME environment variable must be set, or javac must be on the execution path. This
command instruments the classes in the rt. jar file of the JDK, and creates a new file, dcomp_rt. jar, in
the java directory.

Building dcomp_rt requires 10-30 minutes to complete and uses 1024 MB of memory. Regular progress
indicators are printed to standard output.

You can ignore warnings issued during the instrumentation process, so long as the make target itself
completes normally.

If there are any methods in the JDK that DynComp is unable to instrument, their names will be printed
at the end of the instrumentation process. This is not a problem unless your application calls one of these
methods (directly or indirectly). If one of these methods is called, a ‘NoSuchMethodException’ will be
generated when the call is attempted.

If the instrumented JDK is in a non-standard location, use the —-rt-file switch to specify its location,
or change your classpath to include it.

One final note: if you update your JDK in any way (such as an OS upgrade), you will need to rebuild
dcomp_rt. jar.

7.2.2 DynComp options

DynComp is invoked as follows:

java -cp myclasspath:$DAIKONDIR/daikon.jar daikon.DynComp dyncomp-args classname args
where

java classname args
is a valid invocation of Java.

This section lists the optional command-line arguments to DynComp, which appear before the classname
on the DynComp command line.

--verbose
Print information about the classes being processed.

-—-debug
Dump the instrumented classes to debug/bin.

--debug-dir
The directory in which to dump instrumented class files (only if --debug is specified). Defaults to
debug in the current working directory.

DRAFT 4 May 2020

Chapter 7: Front ends (instrumentation) 71

--output-dir=dir
The directory in which to create output files. Defaults to the current working directory.
-—decl-file=file
Output filename for .decls file suitable for input to Daikon. Defaults to target_
program.decls-DynComp.

—-—comparability-file=file
Output filename for a more easily human-readable file summarizing comparability sets. The file is
intended primarily for debugging.

-—trace-file=file
If specified, write a human-readable file showing some of the interactions that occurred. The file is
intended primarily for debugging.

--trace-line-depth=n
Controls size of the stack displayed in tracing the interactions that occurred. Default behavior is to
only display one element in the stack — that is, display at most the topmost function on the stack
when the interaction occurred. This switch has no effect if ——trace-file is not specified, or is null.

--abridged-vars
When this switch is on, DynComp abridges the variables printed in the files specified by
-—comparability-file and --trace-file. For example, DynComp will output ‘Field foo’

instead of ‘dyncomp.chicory.FieldInfo:MyClass.foo’. In particular, it replaces ‘dyncomp.
chicory.ReturnInfo:return’ with ‘return’ and ‘dyncomp.chicory.ThisObjInfo:this’ with
‘this’.

--ppt-select-pattern=regex
Only emit program points that match regex. Specifically, a program point is considered to match
regex if the fully qualified class name, the method name, or the program point name matches regex.
The behavior of this switch is the same as in Chicory (see Section 7.1.1.1 [Program points in Chicory
output], page 62).
This option can be specified multiple times, and may be used in conjunction with --ppt-omit-
pattern. If a program point matches both a select pattern and an omit pattern, it is omitted.
--ppt-omit-pattern=regex
Suppress program points that match regex. Specifically, a program point is considered to match
regex if the fully qualified class name, the method name, or the program point name matches regex.
The behavior of this switch is the same as in Chicory (see Section 7.1.1.1 [Program points in Chicory
output], page 62).
This option can be specified multiple times, any may be used in conjunction with ——ppt-select-
pattern. If a program point matches both a select pattern and an omit pattern, it is omitted.
--no-primitives
Don’t track Java primitive values (of type boolean, int, long, etc.). When this switch is on,
DynComp only tracks the comparability of object references; primitive values are ignored. Using
this switch can greatly improve DynComp’s runtime if you are not interested in primitive values.
—-rt-file=jdk-jar-file
Specifies the location of the instrumented JDK (see Section 7.2.1 [Instrumenting the JDK with
DynComp], page 70). This option is rarely necessary, because if ——rt-file is not specified, DynComp
will search for a file named dcomp_rt. jar along the classpath, and in $DAIKONDIR/java. Both this
file and the current classpath are placed on the boot classpath for DynComp’s execution.
If the filename is NONE, then run DynComp with