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Chapter 1: Introduction 1

1 Introduction

Daikon is an implementation of dynamic detection of likely invariants; that is, the
Daikon invariant detector reports likely program invariants. An invariant is a property
that holds at a certain point or points in a program; these are often seen in assert stat-
ements, documentation, and formal specifications. Invariants can be useful in program
understanding and a host of other applications. Examples include ‘x.field > abs(y)’; ‘y
= 2*x+3’; ‘array a is sorted’; ‘for all list objects lst, lst.next.prev = lst’; ‘for
all treenode objects n, n.left.value < n.right.value’; ‘p != null => p.content in

myArray’; and many more. You can extend Daikon to add new properties (see Chapter 6
[Enhancing Daikon output], page 55, or see Section “New invariants” in Daikon Developer
Manual).

Dynamic invariant detection runs a program, observes the values that the program comp-
utes, and then reports properties that were true over the observed executions. Daikon can
detect properties in C, C++, C#, Eiffel, F#, Java, Perl, and Visual Basic programs; in
spreadsheet files; and in other data sources. (Dynamic invariant detection is a machine
learning technique that can be applied to arbitrary data.) It is easy to extend Daikon to
other applications.

Daikon is freely available for download from download-site. The distribution includes
both source code and documentation, and Daikon’s license permits unrestricted use (see
Section 10.2 [License], page 165). Many researchers and practitioners have used Daikon;
those uses, and Daikon itself, are described in various publications.

For more information on Daikon, see Section “Introduction” in Daikon Developer Manual.
For instance, the Daikon Developer Manual indicates how to extend Daikon with new invar-
iants, new derived variables, and front ends for new languages. It also contains information
about the implementation and about debugging flags.

1.1 Mailing lists

The following mailing lists (and their archives) are available:

‘daikon-announce@googlegroups.com’
A low-volume, announcement-only list. For example, announcements of new releases
are sent to this list. To subscribe, visit https://groups.google.com/forum/ #

!forum/daikon-announce.

‘daikon-discuss@googlegroups.com’
A moderated list for the community of Daikon users. Use it to share tips and successes,
and to get help with questions or problems (after checking the documentation). To
subscribe, visit https://groups.google.com/forum/#!forum/daikon-discuss.

‘daikon-developers@googlegroups.com’
This list goes to the Daikon maintainers. Use it for bug reports, suggestions, and the
like. If you are an active contributor to Daikon, you may send mail to the list asking
to be added.

Do not send the same message to multiple mailing lists. Doing so is antisocial: it causes
confusion and extra work. If you do so, your question will not be answered.
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2 Installing Daikon

Shortcut for the impatient: skip directly to the installation instructions for Section 2.2.2
[Unix/Linux/MacOSX installation], page 3, or Section 2.2.3 [Windows installation], page 4.

There are three ways to install Daikon.

• See Section 2.2 [Complete installation], page 2, for a complete installation, in 4 easy
steps, that permits you to use all of the functionality in the Daikon distribution.

• See Section 2.1 [Simple installation], page 2, for an even simpler 2-step installation
process. The simple installation instructions are adequate if you only wish to detect
invariants in Java programs, and you don’t want to set any environment variables in
your startup file nor run any additional programs distributed with Daikon such as
DynComp.

• See Section “Version control repository” in Daikon Developer Manual, to obtain the
latest Daikon source code from its version control repository.

Differences from previous versions of Daikon appear in the file doc/CHANGES in the dis-
tribution. To be notified of new releases, or to join discussions about Daikon, subscribe to
one of the mailing lists (see Section 1.1 [Mailing lists], page 1).

2.1 Simple installation instructions

Daikon is written in Java. In order to run Daikon, all you really need is the daikon.jar
file, which is included in the distribution or can be downloaded separately from http://

plse.cs.washington.edu/daikon/download/daikon.jar. Place daikon.jar on your
classpath so that Java can find it. You are now ready to use Daikon!

There are two additional requirements. You must have a Java 7 (or later) JVM (Java
Virtual Machine). The tools.jar file that comes with your JVM must also be on your
classpath.

See bullet point two above (Chapter 2 [Installing Daikon], page 2), for situations where
you should follow the complete installation instructions of Section 2.2 [Complete installat-
ion], page 2. (Also, if you do not know how to add a jar file to your classpath, then use the
complete installation instructions, which walks you through the process.)

2.2 Complete installation instructions

This section gives step-by-step instructions for installing Daikon.

Here is an overview of the steps. Details appear below; select the instructions for your
operating system.

1. Download Daikon.

2. Place three commands in your shell initialization file.

3. Optionally, customize your installation.

4. Optionally, compile Daikon and build other tools.

For more complete information on compiling Daikon, see Section “Compiling Daikon” in
Daikon Developer Manual.
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2.2.1 Requirements for running Daikon

In order to run Daikon, you must have a Java 7 (or later) JVM (Java Virtual Machine).
You must also have a Java 7 (or later) compiler.

2.2.1.1 Optional requirements for running Daikon

All the remaining requirements listed here are optional (they enable you to perform
certain additional tasks with Daikon).

If you plan to use one of Daikon’s source-based front ends, then you need a compiler for
whatever language your target programs are written in. For instance, if you wish to analyze
C or C++ programs, you need a C or C++ compiler such as GCC. Source code and a compiler
are not necessary if you plan to use one of Daikon’s front ends that work on binaries, such as
Chicory (see Section 7.1 [Chicory], page 92) or Kvasir (see Section 7.3 [Kvasir], page 105).

If you wish to edit the Daikon source code and re-compile Daikon, see Section “Compiling
Daikon” in Daikon Developer Manual.

2.2.2 Unix/Linux/MacOSX installation

1. Choose the directory where you want to install Daikon; we’ll call this the daikonparent
directory. In this directory, download and unpack Daikon. (Substitute the current
version number for #.#.#.)

cd daikonparent

wget http://plse.cs.washington.edu/daikon/download/daikon-#.#.#.tar.gz

tar zxf daikon-#.#.#.tar.gz

This creates a daikonparent/daikon-#.#.#/ subdirectory.

2. Place three commands in your shell initialization file: set two environment variables
and source a Daikon startup file.

We will assume that you are using the bash shell or one of its variants. Add commands
like these to your ~/.bashrc or ~/.bash_profile file:

# The full pathname of the directory that contains Daikon

export DAIKONDIR=daikonparent/daikon-#.#.#

# The full pathname of the directory that contains the Java JDK

export JAVA_HOME=/usr/lib/jvm/java

source $DAIKONDIR/scripts/daikon.bashrc

A setting of JAVA_HOME that sometimes works (it might not because java might be the
version in the JDK or in the JRE) is:

export JAVA_HOME=${JAVA_HOME:-$(dirname $(dirname $(dirname $(readlink -f $(/usr/bin/which java)))))}

After editing your shell initialization file, either execute the commands you placed in
it, or else log out and log back in to achieve the same effect.

3. Optionally, customize other variables. The customizable variables are listed in the
Daikon startup file: $DAIKONDIR/scripts/daikon.bashrc.

You may customize them by setting environment variables, or by adding a
Makefile.user file to directory $DAIKONDIR/java (it is automatically read at the
beginning of the main Makefile, and prevents you from having to edit the main
Makefile directly).
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4. Optionally, compile Daikon and build other tools. Note that this step is not required
if you only want to use Daikon with its Java front end (Chicory) or its .NET front end
(Celeriac). This step is required for using Daikon with its C/C++ front end (Kvasir),
and for other tools such as DynComp.

make -C $DAIKONDIR rebuild-everything

This builds the various executables used by Daikon, such as the C/C++ front end Kvasir
(see Section 7.3.8 [Installing Kvasir], page 125) and the JDK for use with DynComp
(see Section 7.2.1 [Instrumenting the JDK with DynComp], page 101). If you need
more information about compiling Daikon, see Section “Compiling Daikon” in Daikon
Developer Manual. If you have trouble compiling the C/C++ front end Kvasir, see See
Section 7.3.8 [Installing Kvasir], page 125.

Note that running this make command may take 20 minutes or more, depending on
your computer.

Optionally, download other executables, such as the Simplify theorem prover (see
Section 9.1.11.1 [Installing Simplify], page 155).

2.2.3 Windows installation

To perform a complete install on Windows, it is necessary to install the Cygwin toolset.
After you have installed Daikon, you can run it using either Cygwin or the regular Windows
shell (see Section 2.2.4 [Running Daikon under Windows], page 5).

The Cygwin toolset (available at http://cygwin.com/) contains everything you need
to compile and run Linux programs under Windows. You can install Cygwin by running
the appropriate setup program; either http://cygwin.com/setup-x86.exe or http://

cygwin.com/setup-x86_64.exe, as determined by your machine type. The default install-
ation of Cygwin is sufficient for installing Daikon.

1. Choose the directory where you want to install Daikon; we’ll call this the daikonparent
directory. In this directory, download and unpack Daikon. (Substitute the current
version number for #.#.#.)

cd daikonparent

wget http://plse.cs.washington.edu/daikon/download/daikon-#.#.#.tar.gz

tar zxf daikon-#.#.#.tar.gz

This creates a daikonparent/daikon-#.#.#/ subdirectory.

2. Place three commands in your shell initialization file ~/.bashrc: set two environment
variables and source a Daikon startup file. Do not use a Windows shell; use the Cygwin
bash shell instead.

# The full pathname of the directory that contains Daikon

export DAIKONDIR=daikonparent/daikon-#.#.#

# The full Linux pathname of the directory that contains the Java JDK

export JAVA_HOME=/cygdrive/c/Program Files/Java/jdk1.7.0_45

source $DAIKONDIR/scripts/daikon.bashrc

Use the Cygwin/Linux path style (e.g., /cygdrive/c/daikon) rather than the windows
path style (C:\daikon). Some users have reported problems when using pathnames
with spaces. You can avoid the problem by using the ln command to add a symbolic
link without spaces to Program Files.
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cd /cygdrive/c

ln -s "Program Files" program_files

and then the JAVA HOME line becomes:

export JAVA_HOME=/cygdrive/c/program_files/Java/jdk1.7.0_45

After editing your shell initialization file, either execute the commands you placed in
it, or else log out and log back in to achieve the same effect.

3. Optionally, customize other variables. The customizable variables are listed in the
Daikon startup file: $DAIKONDIR/scripts/daikon.bashrc.

You may customize them by setting environment variables, or by adding a
Makefile.user file to directory $DAIKONDIR/java (it is automatically read at the
beginning of the main Makefile, and prevents you from having to edit the main
Makefile directly).

The one variable you must customize is to define the OSTYPE variable to be ‘cygwin’.

OSTYPE = cygwin

4. Optionally, compile Daikon and build other tools. Note that this step is not required
if you only want to use Daikon with its Java front end (Chicory) or its .NET front end
(Celeriac). This step is required for using other tools such as DynComp.

make -C $DAIKONDIR rebuild-everything

This builds the various executables used by Daikon, such as the JDK for use with
DynComp (see Section 7.2.1 [Instrumenting the JDK with DynComp], page 101). If
you need more information about compiling Daikon, see Section “Compiling Daikon” in
Daikon Developer Manual. If you have trouble compiling the C/C++ front end Kvasir,
see See Section 7.3.8 [Installing Kvasir], page 125. Note that Kvasir does not work
under Cygwin.

Note that running this make command may take 20 minutes or more, depending on
your computer. On Windows, running make requires that Cygwin be installed.

Optionally, download other executables, such as the Simplify theorem prover (see
Section 9.1.11.1 [Installing Simplify], page 155).

2.2.4 Running Daikon under Windows

After you have installed Daikon under Windows (see Section 2.2.3 [Windows installat-
ion], page 4), you can run it either using native Windows utilities, or using the Cygwin
environment — it’s your choice.

Daikon is a command-line application (and so are its related programs, such as Chicory).
You should invoke them from a command shell — either a Windows command shell or a
Cygwin command shell — rather than by double-clicking their icons. In any event, double-
clicking would not supply the proper arguments to the program.

First, a little background/review. Java on Linux separates its CLASSPATH entries using
the colon (‘:’) while Java on Windows separates the entries with a semi-colon (‘;’). There
is a good reason for this; on Windows the colon would have been impractical as it is used
in file paths (c:\); on Linux the semi-colon is impractical, as it is used to end a command
line. The tricky bit is that Cygwin provides a Linux like environment on top of Windows.
So Cygwin mainly wants colon separators but java is a Windows application, so it wants

DRAFT 1 June 2016

http://www.cygwin.com/


Chapter 2: Installing Daikon 6

semi-colons. Another point is that when a Cygwin shell starts up, it copies the Windows
environment into its Linux like environment with no changes - except for the PATH variable.
This it converts to Linux format (with colons) and adds "/usr/local/bin:/usr/bin:" to the
front. Hence, it is all set to run both Cygwin and existing Windows applications.

2.2.4.1 Windows command line

The first option is to run Daikon using native Windows utilities. The is done in the normal
fashion. However, getting the correct value for CLASSPATH can be confusing. As noted above,
it must be specified in Windows format (Windows paths and semicolon separators). It must
include either $DAIKONDIR/daikon.jar or $DAIKONDIR/java (if you have recompiled the
Daikon source). A typical example for CLASSPATH might be:

C:\cygwin64\home\user\invariants\daikon\daikon.jar;.;C:\Program Files

(x86)\QuickTime\QTSystem\QTJava.zip;C:\Program Files\Java\jdk1.7.0_45\

jre\lib\rt.jar;C:\Program Files\Java\jdk1.7.0_45\lib\tools.jar

With this done, one may enter: java daikon.Daikon in any directory and Daikon should
start up correctly.

2.2.4.2 Cygwin shell

The second option for Windows (and the one we recommend) is to run Daikon using the
Cygwin toolset (available at http://cygwin.com/), which contains everything you need
to compile and run Linux programs under Windows. You can install Cygwin by simply
running one of the setup programs (based on your machine type) found at http://cygwin.
com/.

As noted above, when running any Java program (such as Daikon or Chicory), the
CLASSPATH must be specified in Windows format. Your initial install of the Java JDK
will have set the basics for the CLASSPATH. When you installed Daikon, you were instr-
ucted to place into your shell initialization file commands to set DAIKONDIR and JAVA_HOME

and then source $DAIKONDIR/scripts/daikon.bashrc. This will set CLASSPATH properly
each time you start a Bash shell. The result should be a value for CLASSPATH that looks
something like:

C:\cygwin64\home\user\invariants\daikon\daikon.jar;.;C:\Program Files

(x86)\QuickTime\QTSystem\QTJava.zip;C:\Program Files\Java\jdk1.7.0_45\

jre\lib\rt.jar;C:\Program Files\Java\jdk1.7.0_45\lib\tools.jar

If you wish to override CLASSPATH by using the -classpath (or -cp) option, you need
to remember that the result must be in Windows format. This can get confusing because
the Cygwin bash interpreter is going to process the command line prior to handing it off to
java. Hence:

java -cp c:\cygwin64\home\user\invariants\daikon\daikon.jar daikon.Daikon

will fail as the backslash ‘\’ is processed by bash and removed. Any of the following will
work:

java -cp c:\\cygwin64\\home\\user\\invariants\\daikon\\daikon.jar daikon.Daikon

java -cp "c:\cygwin64\home\user\invariants\daikon\daikon.jar" daikon.Daikon

java -cp c:/cygwin64/home/user/invariants/daikon/daikon.jar daikon.Daikon
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The last is interesting as this is almost the same as on “real” Linux. Windows accepts
either forward (‘/’) or backward (‘\’) slashes as directory separators in paths. There are
similar command parsing issues with parenthesis and blanks. These are legal in Windows
paths, but will cause bash to get confused. In general, enclosing a valid Windows path
within double quotes (‘"’) is the preferred way to avoid these problems. If you find it more
convenient to use Linux paths, or want to use an existing environment variable that contains
a Linux path, the cygpath tool will do the job. Thus, instead of:

java -cp $HOME/invariants/daikon/daikon.jar daikon.Daikon

(which will fail), use

java -cp `cygpath -wp $HOME/invariants/daikon/daikon.jar` daikon.Daikon

(note the back quotes ‘`’) and everything should work as expected. Or even better:

java -cp "`cygpath -wp $HOME/invariants/daikon/daikon.jar`" daikon.Daikon

since there may be some Windows path characters contained in the environment variables.
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3 Example usage for Java, C/C++, C#/F#/Visual
Basic, Perl, and Eiffel

Detecting invariants involves two steps:

1. Obtain one or more data trace files by running your program under the control of a front
end (also known as an instrumenter or tracer) that records information about variable
values. You can run your program over one or more inputs of your own choosing, such
as regression tests or a typical user input session. You may choose to obtain trace data
for only part of your program; this can avoid inundating you with output, and can also
improve performance.

2. Run the Daikon invariant detector over the data trace files (see Chapter 4 [Running
Daikon], page 18). This detects invariants in the recorded information. You can view
the invariants textually, or process them with a variety of tools.

Often, you can run a single command that performs both steps. Among other benefits,
this can avoid the need to create the data trace file by sending trace information directly
from the instrumented program to Daikon, which is called online execution of Daikon.

This section briefly describes how to obtain data traces for Java, C, C#, Perl, and Eiffel
programs, and how to run Daikon. For detailed information about these and other front
ends that are available for Daikon, see Chapter 7 [Front ends (instrumentation)], page 92.

3.1 Detecting invariants in Java programs

In order to detect invariants in a Java program, run the program using the Chicory front
end (see Section 7.1 [Chicory], page 92) to create a data trace file, then run Daikon itself to
detect invariants. With the --daikon option to Chicory, a single command performs both
steps.

For example, if you usually run

java mypackage.MyClass arg1 arg2 arg3

then instead you would run

java daikon.Chicory --daikon mypackage.MyClass arg1 arg2 arg3

and the Daikon output is written to the terminal.

3.1.1 StackAr example

The Daikon distribution contains some sample programs that will help you get practice
in running Daikon.

To detect invariants in the StackAr sample program, perform the following steps after
installing Daikon (see Chapter 2 [Installing Daikon], page 2).

1. Compile the program with the -g switch to enable debugging symbols. (The program
and test suite appear in the DataStructures subdirectory.)

cd examples/java-examples/StackAr

javac -g DataStructures/*.java

2. Run the program under the control of the Chicory front end, pass the information to
Daikon, print the inferred invariants, and write a binary representation of the invariants
to StackArTester.inv.gz.
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java daikon.Chicory --daikon DataStructures.StackArTester

If you have not set the CLASSPATH as yet, you may add it to the command line for
now - but don’t forget to set it later.

java -cp "../../../daikon.jar:." daikon.Chicory --daikon DataStructures.StackArTester

Alternately, replacing the --daikon argument by --daikon-online has the same effect,
but does not write a data trace file to disk.

If you wish to have more control over the invariant detection process, you can split the
second step above into multiple steps. Then, the whole process is as follows:

1. Compile the program with the -g switch to enable debugging symbols. (The program
and test suite appear in the DataStructures subdirectory.)

cd examples/java-examples/StackAr

javac -g DataStructures/*.java

2. Run the program under the control of the Chicory front end, in order to create a trace
file named StackArTester.dtrace.gz.

java daikon.Chicory DataStructures.StackArTester

3. Run Daikon on the trace file.

java daikon.Daikon StackArTester.dtrace.gz

Daikon can analyze multiple runs (executions) of the program. You can supply Daikon
with multiple trace files:

java daikon.Chicory --dtrace-file=StackArTester1.dtrace.gz DataStructures.StackArTester

java daikon.Chicory --dtrace-file=StackArTester2.dtrace.gz DataStructures.StackArTester

java daikon.Chicory --dtrace-file=StackArTester3.dtrace.gz DataStructures.StackArTester

java daikon.Daikon StackArTester*.dtrace.gz

(In this example, all the runs are identical, so multiple runs yield the same invariants
as one run.)

4. Examine the invariants. (They were also printed to standard out by the previous step.)

There are various ways to do this.

• Examine the output from running Daikon. (You may find it convenient to capture
the output in a file; add ‘> StackAr.txt’ to the end of the command that runs
Daikon.)

• Use the PrintInvariants program to display the invariants.

java daikon.PrintInvariants StackArTester.inv.gz

For more options to the PrintInvariants program, see Section 8.1.1 [Printing
invariants], page 137.

• Use the Annotate program to insert the invariants as comments into the Java
source program.

cd ..

java daikon.tools.jtb.Annotate StackArTester.inv.gz \

DataStructures/StackAr.java

(Here and elsewhere in the manual, the continuation character ‘\’ is used to split
a long command across lines. Windows uses the ‘^’ character instead.)

Now examine file DataStructures/StackAr.java-escannotated. For more in-
formation about the Annotate program, see Section 8.1.4 [Annotate], page 140.
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3.1.2 Detecting invariants when running a Java program from a
jar file

If your Java program is run directly from a jar file, such as either of:

java mypackage.jar arguments

java -cp <originalclasspath> mypackage.jar arguments

then to detect invariants in that Java program, run one of these commands:

java -cp mypackage.jar daikon.Chicory --daikon <MyMain> arguments

java -cp mypackage.jar:<original classpath> daikon.Chicory --daikon <MyMain> arguments

where <MyMain> is the Main-class of the jar file, which you can determine by running the
command:

unzip -p mypackage.jar META-INF/MANIFEST.MF | grep ’^Main-Class:’

3.1.3 Using DynComp with Java programs

DynComp can help to filter Daikon’s output by omitting invariants involving unrelated
variables (see Section 7.2 [DynComp for Java], page 98). To do so, run DynComp on the
target program first, then pass the resulting .decls file to Chicory. The process is as
follows:

1. Compile the program with the -g switch to enable debugging symbols. (The program
and test suite appear in the DataStructures subdirectory of the StackAr directory.)

cd examples/java-examples/StackAr

javac -g DataStructures/*.java

2. Run the program with DynComp to generate comparability information. You should
produce an instrumented version of the JDK first (see Section 7.2.1 [Instrumenting the
JDK with DynComp], page 101). By default, comparability information is written to
StackArTester.decls-DynComp.

java daikon.DynComp DataStructures.StackArTester

3. Run the program under the control of the Chicory front end, including comparability
information. Pass the information to Daikon, print the inferred invariants, and write a
binary representation of the invariants to StackArTester.inv.gz. Note that this runs
the target program for a second time.

java daikon.Chicory --daikon \

--comparability-file=StackArTester.decls-DynComp \

DataStructures.StackArTester

You could split the third step into multiple steps, as described in Section 3.1.1 [StackAr
example], page 8, to gain more control over the invariant detection process.

3.1.4 Understanding the invariants

This section examines some of the invariants for the StackAr example. For more help
interpreting invariants, see Section 5.4 [Interpreting output], page 29.

The StackAr example is an array-based stack implementation. Take a look at
DataStructures/StackAr.java to get a sense of the implementation. Now, look at the
first section of Daikon output.

======================================================================
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StackAr:::OBJECT

this.theArray != null

this.theArray.getClass() == java.lang.Object[].class

this.topOfStack >= -1

this.theArray[this.topOfStack+1..] elements == null

this.theArray[0..this.topOfStack] elements != null

this.topOfStack <= size(this.theArray[])-1

======================================================================

These six annotations describe the representation invariant. The array is never null, and its
runtime type is Object[]. The topOfStack index is at least -1 and is less than the length
of the array. Finally, the elements of the array are non-null if their index is no more than
topOfStack and are null otherwise.

Next, look at the invariants for the top() method. top() has two different exit points,
at lines 78 and 79 in the original source. There is a set of invariants for each exit point, as
well as a set of invariants that hold for all exit points. Look at the invariants when top()

returns at line 79.

======================================================================

StackAr.top():::EXIT79

return == this.theArray[this.topOfStack]

this.theArray == orig(this.theArray)

this.theArray[] == orig(this.theArray[])

this.topOfStack == orig(this.topOfStack)

return != null

this.topOfStack >= 0

this.theArray[this.topOfStack+1..] elements == this.theArray[-1]

======================================================================

The return value is never null, and is equal to the array element at index topOfStack.
The top of the stack is at least 0. The array, the elements of the array, and topOfStack

are not modified by this method — this method is an observer. The last invariant is not
particularly interesting.

3.1.5 Understanding DynComp

To get a sense of how DynComp helps eliminate uninteresting output, take a look at the
invariants for the exit point at line 32 of the createItem(int) method.

======================================================================

DataStructures.StackArTester.createItem(int):::EXIT32

this.phase == 4

return.getClass() == int[].class

this.s.topOfStack < orig(i)

this.phase < orig(i)

this.phase != size(this.s.theArray[])

this.maxPhase < orig(i)

======================================================================

The value of phase is always less than the value of i. While this is true for the observed
executions, it is not a helpful invariant, since phase and i represent different abstract types;
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i is a number to be pushed onto the stack, while phase is used for program flow control.
Although they are both ints, comparing the two is not meaningful, so this invariant, among
others, is omitted from the output when Daikon is run with DynComp.

======================================================================

DataStructures.StackArTester.createItem(int):::EXIT32

this.phase == 4

return.getClass() == int[].class

this.s.topOfStack < orig(i)

======================================================================

3.1.6 A second Java example

A second example is located in the examples/java-examples/QueueAr subdirectory.
Run this sample using the following steps:

• Compile

cd examples/java-examples/QueueAr

javac -g DataStructures/*.java

• Trace file generation and invariant detection

java daikon.Chicory --daikon DataStructures.QueueArTester

Alternately, you can split the second command into two parts:

• Trace file generation

java daikon.Chicory DataStructures.QueueArTester

• Invariant detection

java daikon.Daikon QueueArTester.dtrace.gz

3.2 Detecting invariants in C/C++ programs

In order to detect invariants over C or C++ programs, you must first install a C/C++
front end (instrumenter). We recommend that you use Kvasir (see Section 7.3 [Kvasir],
page 105), and this section gives examples using Kvasir.

To use the C/C++ front end Kvasir with your program, first make sure that your program
has been compiled with DWARF-2 format debugging information, such as by giving the
-gdwarf-2 flag to GCC when compiling. Then, run your program as usual, but prepend
kvasir-dtrace to the command line.

For more information about Kvasir, including more detailed documentation on its
command-line options, see Section 7.3 [Kvasir], page 105.

3.2.1 C examples

The Daikon distribution comes with several example C programs to enable users to bec-
ome familiar with running Daikon on C programs. These examples are located in the
examples/c-examples directory.

To detect invariants for a program with Kvasir, you need to perform two basic tasks:
run the program under Kvasir to create a data trace file (steps 1–2), and run Daikon over
the data trace file to produce invariants (steps 3–4). The following instructions are for the
wordplay example, which is a program for finding anagrams.
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1. Change to the directory containing the program.

cd $DAIKONDIR/examples/c-examples/wordplay

2. Compile the program with DWARF-2 debugging information enabled (and all optim-
izations disabled).

gcc -gdwarf-2 wordplay.c -o wordplay

Kvasir can also be used for programs constructed by compiling a number of .c files
separately, and then linking them together; in such a program, specify -gdwarf-2 when
compiling each source file containing code you wish to see invariants about.

3. Run the program just as you normally would, but prepend kvasir-dtrace to the
command line.

kvasir-dtrace ./wordplay -f words.txt ’daikon dynamic invariant detector’

Any options to the program can be specified as usual; here, for instance, we give
commands to look for anagrams of the phrase “Daikon Dynamic Invariant Detector”
using words from the file words.txt.

Executing under Kvasir, the program runs normally, but Kvasir executes additional
checks and collects trace information (for this reason, the program will run more slowly
than usual). Kvasir creates a directory named daikon-output under the current di-
rectory, and creates the wordplay.dtrace file, which lists both variable declarations
and values.

Kvasir will also print messages if it observes your program doing something with un-
defined effects; these may indicate bugs in your program, or they may be spurious.
(If they are bugs, they can also be tracked down by using Valgrind (http://www.
valgrind.org/) with its regular memory checking tool; if they do not appear with
that tool, they are probably spurious).

4. Run Daikon on the trace file.
java daikon.Daikon \

--config_option daikon.derive.Derivation.disable_derived_variables=true \

daikon-output/wordplay.dtrace

The invariants are printed to standard output, and a binary representation of the
invariants is written to wordplay.inv.gz. Note that the example uses a configuration
option to disable the use of derived variables; it can also run without that option, but
takes significantly longer.

Daikon can analyze multiple runs (executions) of the program. You can supply Daikon
with multiple trace files:

kvasir-dtrace --dtrace-file=daikon-output/wordplay1.dtrace \

./wordplay -f words.txt ’daikon dynamic invariant detector’

kvasir-dtrace --dtrace-file=daikon-output/wordplay2.dtrace \

./wordplay -f words.txt ’better results from multiple runs’

kvasir-dtrace --dtrace-file=daikon-output/wordplay3.dtrace \

./wordplay -f words.txt ’more testing equals better testing’

java -Xmx256m daikon.Daikon daikon-output/wordplay*.dtrace

or, you can append information from multiple runs in a single trace file:
kvasir-dtrace --dtrace-file=daikon-output/wordplay-all.dtrace \

./wordplay -f words.txt ’daikon dynamic invariant detector’

kvasir-dtrace --dtrace-append --dtrace-file=daikon-output/wordplay-all.dtrace \
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./wordplay -f words.txt ’better results from multiple runs’

kvasir-dtrace --dtrace-append --dtrace-file=daikon-output/wordplay-all.dtrace \

./wordplay -f words.txt ’more testing equals better testing’

java -Xmx256m daikon.Daikon daikon-output/wordplay-all.dtrace

5. Examine the invariants. As described in Section 3.1.1 [StackAr example], page 8, there
are several ways to do this:

• Examine the output from running Daikon.

• Use the PrintInvariants program to display the invariants.

For help understanding the invariants, see Section 5.4 [Interpreting output], page 29.

3.2.2 Using DynComp with C programs

DynComp can help to filter Daikon’s output by omitting invariants involving unrelated
variables (see Section 7.3.3 [DynComp for C/C++], page 112). DynComp uses a dynamic
analysis to infer which program variables can meaningfully be used together; Daikon can
then use this information to restrict the invariants it considers, potentially improving both
its performance and the usefulness of its results.

DynComp is enabled as an extra mode of Kvasir; when running with DynComp enabled,
Kvasir produces two output files instead of one: in addition to a .dtrace file containing a
trace of a particular execution, the information about what variables and functions exist in
a program, along with information grouping the variables into abstract types, is stored in
a file with the extension .decls. Both of these files must be supplied to Daikon.

For instance, to repeat the wordplay example with DynComp, first rerun kvasir-dtrace

giving it the option --with-dyncomp:
kvasir-dtrace --with-dyncomp \

./wordplay -f words.txt ’daikon dynamic invariant detector’

Then, supply the .decls file when invoking Daikon:
java daikon.Daikon \

--config_option daikon.derive.Derivation.disable_derived_variables=true \

daikon-output/wordplay.decls daikon-output/wordplay.dtrace

For instance, one effect of DynComp that can be seen in the wordplay example conc-
erns the global variables largestlet, rec_anag_count, adjacentdups, specfirstword,
maxdepthspec, and silent. These variables are all 0 in the sample execution (for instance,
several of them correspond to command-line options that are not enabled), so without
DynComp, Daikon gives the invariants that they are all equal. However, DynComp’s an-
alysis finds that the variables are of different abstract types, so it is not meaningful to
compare them. When DynComp information is provided, Daikon instead gives separate
invariants about the value of each variable.

3.2.3 Dealing with large examples

Since the default memory size used by a Java virtual machine varies, we suggest that
Daikon be run with at least 256 megabytes of memory (and perhaps much more), specified
for many JVMs by the option -Xmx256m. For more information about specifying the memory
usage for Daikon, see Section 9.1.10 [Out of memory], page 154.

Disk usage can be reduced by specifying that the front end should compress its output
.dtrace files.
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In some cases, the time and space requirements of the examples can be reduced by
reducing the length of the program run. However, Daikon’s running time depends on both
the length of the test run and the size of the program data (such as its use of global
variables and nested data structures). The examples also demonstrate disabling derived
variables, which significantly improves Daikon’s performance at the cost of producing fewer
invariants. For more techniques for using Daikon with large programs and long program
runs, see Section 9.2 [Large dtrace files], page 157.

3.3 Detecting invariants in C#, F#, and Visual Basic
programs

The Daikon front end for .NET languages (C#, F#, and Visual Basic) is called Celeriac.

Please see its documentation at :
https://github.com/codespecs/daikon-dot-net-front-end.

3.4 Detecting invariants in Perl programs

The Daikon front end for Perl is called dfepl.

Using the Perl front end is a two-pass process: first you must run the annotated program
so that the runtime system can dynamically infer the kind of data stored in each variable,
and then you must re-annotate and re-run the program with the added type information.
This is necessary because Perl programs do not contain type declarations.

dfepl requires version 5.8 or later of Perl.

3.4.1 Instrumenting Perl programs

Perl programs must be instrumented twice. First they must be instrumented without
type information. Then, once the first instrumented version has been run to produce type
information, they must be instrumented again taking the type information into account.

To instrument a stand-alone Perl program, invoke dfepl with the name of the program
as an argument.

dfepl program.pl

To instrument a Perl module or a collection of modules, invoke dfepl either with the name
of each module, or with the name of a directory containing the modules. To instrument
all the modules in the current directory, give dfepl the argument .. For instance, if
the current directory contains a module Acme::Trampoline in Acme/Trampoline.pm and
another module Acme::Date in Acme/Date.pm, they can be annotated by either of the
following two commands:

dfepl Acme/Trampoline.pm Acme/Date.pm

dfepl .

Once type information is available, run the instrumentation command again with the -T
or -t options added to use the produced type information.

For more information about dfepl, see Section 7.5 [dfepl], page 128.
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3.4.2 Perl examples

The Daikon distribution includes sample Perl programs suitable for use with Daikon in
the examples/perl-examples directory.

Here are step-by-step instructions for examining a simple module, Birthday.pm, as used
by a test script test-bday.pl.

1. Change to the directory containing the Birthday.pm module.

cd examples/perl-examples

2. Instrument the Birthday.pm file.

dfepl Birthday.pm

This command creates a directory daikon-untyped, and puts the instrumented version
of Birthday.pm into daikon-untyped/Birthday.pm. As the directory name implies,
this instrumented version doesn’t contain type information.

3. Run a test suite using the instrumented Birthday.pm file.

dtype-perl test_bday.pl 10

The dtype-perl is a script that runs Perl with the appropriate command line options
to find the modules used by the Daikon Perl runtime tracing modules, and to use the
instrumented versions of modules in daikon-untyped in preference to their original
ones. The number 10 is an argument to the test_bday.pl script telling it to run a
relatively short test.

This will also generate a file daikon-instrumented/Birthday.types recording the
type of each variable seen during the execution of the instrumented program.

4. Re-annotate the module using the type information.

dfepl -T Birthday.pm

This step repeats step 2, except that the -T flag to dfepl tells it to use the
type information generated in the previous step, and to put the output in the
directory daikon-instrumented. dfepl also converts the type information into a
file daikon-output/Birthday.decls containing subroutine declarations suitable for
Daikon.

5. Run the full test suite with the type-instrumented Birthday.pm.

dtrace-perl test_bday.pl 30

Here we run another test suite, which happens to be the same test_bday.pl, but
running for longer. (The example will also work with a smaller number). The script
dtrace-perl is similar to dtype-perl mentioned earlier, but looks for instrumented
source files in daikon-instrumented.

This creates daikon-output/test_bday-combined.dtrace, a trace file containing the
values of variables at each invocation. (The filename is formed from the name of the
test program, with -combined appended because it contains the trace information from
all the instrumented modules invoked from the program).

6. Change to the daikon-output directory to analyze the output.

cd daikon-output

7. Run Daikon on the trace file
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java daikon.Daikon Birthday.decls test_bday-combined.dtrace

8. Examine the invariants. They are printed to standard output, and they are also saved to
file Birthday.inv.gz, which you can manipulate with the PrintInvariants program
and other Daikon tools. For example:

java daikon.PrintInvariants Birthday.inv.gz

Invariants produced from Perl programs can be examined using the same tools as other
Daikon invariants.

In the example above, the script test_bday.pl was not itself instrumented; it was only
used to test the instrumented code. The Perl front end can also be used to instrument
stand-alone Perl programs. The following sequence of commands, similar to those above,
show how Daikon can be used with the stand-alone program standalone.pl, also in the
examples/perl-examples directory.

dfepl standalone.pl

dtype-perl daikon-untyped/standalone.pl

dfepl -T standalone.pl

dtrace-perl daikon-instrumented/standalone.pl

cd daikon-output

java daikon.Daikon -o standalone.inv standalone-main.decls \

standalone-combined.dtrace

Note two differences when running a stand-alone program. First, the instrumented versions
of the program, in the daikon-untyped or daikon-instrumented directory, are run directly.
Second, the declarations file is named after the package in which the subroutines were
declared, but since every stand-alone program uses the main package, the name of the
program is prepended to the .decls file name to avoid collisions.

3.5 Detecting invariants in Eiffel programs

CITADEL is an Eiffel front-end to the Daikon invariant detector. You can obtain Citadel
and its documentation from http://se.inf.ethz.ch/people/polikarpova/citadel/.
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4 Running Daikon

This section describes how to run Daikon on a data trace (.dtrace) file, and describes
Daikon’s command-line options. This section assumes you have already run a front end (e.g.,
an instrumenter) to produce a .dtrace file (and optionally .decls and .spinfo files); to
learn more about that process, see Chapter 3 [Example usage], page 8, and see Chapter 7
[Front ends (instrumentation)], page 92.

Run the Daikon invariant detector via the command

java daikon.Daikon [flags] dtrace-files... \

[decls-files...] [spinfo-files...]

• The dtrace-files are data trace (.dtrace) files containing variable values from an exe-
cution of the target program.

• The decls-files are declaration (.decls) files containing program point declarations. Be
sure to include all declaration files that are needed for the particular data trace file;
the simplest way is to include every declaration file created when instrumenting the
program.

Not all Daikon front ends produce .decls files, since program point declarations
may also appear in .dtrace files. For instance, the Chicory front end for Java (see
Section 7.1 [Chicory], page 92) produces only .dtrace files. If there are no .decls

files, then it is not necessary to include them on the command line to Daikon.

Note that combining input files from Chicory and (Java) DynComp can lead to a decl
format error. The preferred usage is to use the DynComp generated .decls file(s) as
input to Chicory. See Section 3.1.3 [Using DynComp with Java programs], page 10 for
more details.

• The spinfo-files are splitter info (.spinfo) files that enable detection of conditional
invariants (see Section 6.2 [Conditional invariants], page 82); these are optional and
may be created automatically or by hand.

The files may appear in any order; the file type is determined by whether the file name
contains .decls, .dtrace, or .spinfo. As a special case, a file name of - means to read
data trace information from standard input.

The optional flags are described in the sections that follow. For further ways to control
Daikon’s behavior via configuration options, see Section 6.1 [Configuration options], page 55;
also see the list of options to the front end such as Chicory (see Section 7.1.1 [Chicory
options], page 92) or Kvasir (see Section 7.3.2 [Kvasir options], page 106).

4.1 Options to control Daikon output

--help

Print usage message.

-o inv_file

Output serialized invariants to the specified file; they can later be postprocessed,
compared, etc. Default: basename.inv.gz in the current directory, where the first
data trace file’s basename starts with basename.dtrace. Default is no serialized
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output, if no such data trace file was supplied. If a data trace file was supplied, there
is currently no way to avoid creating a serialized invariant file.

--no_text_output

Don’t print invariants as text output. This option may be used in conjunction with
the -o option.

--format name

Produce output in the given format. For a list of the output formats supported by
Daikon, see Section 5.1 [Invariant syntax], page 24.

--show_progress

--no_show_progress

Prints (respectively, suppresses) timing information as major portions of Daikon are
executed.

--noversion

Suppress the printing of version information

--output_num_samples

Output numbers of values and samples for invariants and program points; this is a
debugging flag. (That is, it helps you understand why Daikon produced the output
that it did.)

The ‘Samples breakdown’ output indicates how many samples in the .dtrace file
had a modified value (‘m’), had an unmodified value (‘u’), and had a nonsensical value
(‘x’). The summary uses a capital letter if the sample had any of the corresponding
type of variable, and a lower-case letter if it had none. These types affect statistical
tests that determine whether a particular invariant (that was true over all the test
runs) is printed.

Only variables that appear in both the pre-state and the post-state (variables that
are in scope at both procedure exit and entry) are eligible to be listed as modified or
unmodified. This is why the list of all variables is not the union of the modified and
unmodified variables.

--files_from filename

Read a list of .decls, .dtrace, or .spinfo files from the given text file, one filename
per line, as an alternative to providing them on the command line.

--server dirname

Server mode for Daikon in which it reads files from dirname as they appear (sorted
lexicographically) until it finds a file ending in ‘.end’, at which point it calculates and
outputs the invariants.

--omit_from_output [0rs]

Omit some potentially redundant information from the serialized output file produced
with -o. By default, the serialized output contains all of the data structures produced
by Daikon while inferring invariants. Depending on the use to which the serialized
output will later be put, the file can sometimes be significantly shortened by omitting
information that is no longer needed. The flag should be followed by one or more
characters each representing a kind of structures the can be omitted. The following
characters are recognized:
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0 (zero)

Omit information about program points that were declared, but for which no
samples were found in any .dtrace file.

r Omit reflexive invariants, those in which a variable appears more than once.
Usually, such invariants are not interesting, because their meaning is duplicated
by invariants with fewer variables: for instance, x = x - x and y = z + z can
be expressed as x = 0 and y = 2 * z instead. However, Daikon generates and
uses such invariants internally to decide what invariants to create when two
previously equal variables turn out to be different.

s Omit invariants that are suppressed by other invariants. Suppression refers to
a particular optimization in which the processing of an invariant is postponed
as long as certain other invariants that logically imply it hold.

For most uses of serialized output in the current version, it is safe to use the 0 and
r omissions, but the s omission will cause subtle output changes. In many cases, the
amount of space saved is modest (typically around 10%), but the savings can be more
substantial for programs with many unused program points, or program points with
many variables.

4.2 Options to control invariant detection

--conf_limit val

Set the confidence limit for justifying invariants. If the confidence level for a given
invariant is larger than the limit, then Daikon outputs the invariant. This mechanism
filters out invariants that are satisfied purely by chance. This is only relevant to
invariants that were true in all observed samples; Daikon never outputs invariants
that were ever false.

val must be between 0 and 1; the default is .99. Larger values yield stronger filtering.

Each type of invariant has its own rules for determining confidence. See the
computeConfidence method in the Java source code for the invariant.

For example, consider the invariant a<b whose confidence computation is 1 -

1/2^numsamples, which indicates the likelihood that the observations of a and b
did not occur by chance. If there were 3 samples, and a<b on all of them, then the
confidence would be 7/8 = .875. If there were 6 samples, and a<b on only 5 on them,
the confidence would be 0. If there were 9 samples, and a<b on all of them, then the
confidence would be 1-1/2^9 = .998.

There are two ways to print the confidence of each invariant. You can use Diff (see
Section 8.1.3 [Invariant Diff], page 138):

java daikon.diff.Diff MyFile.inv.gz

or you can use PrintInvariants (see Section 8.1.1 [Printing invariants], page 137):

java daikon.PrintInvariants --dbg daikon.PrintInvariants.repr \

MyFile.inv.gz

To print the confidence of each invariant that is discarded, run Daikon with the
--disc_reason all command-line option (see Section 4.5 [Daikon debugging
options], page 22).
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--list_type classname

Indicate that the given class implements the java.util.List interface. The preferred
mechanism for indicating such information is the ListImplementors section of the
.decls file. See Section “ListImplementors declaration” in Daikon Developer Manual.

--user-defined-invariant classname

Use a user-defined invariant that not built into Daikon but is defined in the given class.
The classname should be in the fully-qualified format expected by Class.getName(),
such as “mypackage.subpackage.ClassName”, and its .class file should appear on
the classpath.

--disable-all-invariants

Disable all known invariants: all those that are built into Daikon, and all those that
have been specified by --user-defined-invariant so far. An invariant may be re-
enabled after this option is specified, see Section 6.1.1.4 [Options to enable/disable
derived variables], page 72.

--nohierarchy

Avoid connecting program points in a dataflow hierarchy. For example, Daikon
normally connects the :::ENTER program points of class methods with the class’s
:::CLASS program point, so that any invariant that holds on the :::CLASS program
point is considered to hold true on the :::ENTER program point. With no hierarchy,
each program point is treated independently. This is for using Daikon on applicat-
ions that do not have a concept of hierarchy. It can also be useful when you wish
to process unmatched enter point samples from a trace file that is missing some exit
point samples.

--suppress_redundant

Suppress display of logically redundant invariants, using the Simplify automatic
theorem prover. Daikon already suppresses most logically redundant output. For
example, if ‘x >= 0’ and ‘x > 0’ are both true, then Daikon outputs only ‘x > 0’. Use
of the --suppress_redundant option tells Daikon to use Simplify to eliminate even
more redundant output, and should be used if it is important that absolutely no
redundancies appear in the output.

The Simplify program must be installed in order to take advantage of this option
(see Section 9.1.11.1 [Installing Simplify], page 155). Beware that Simplify can run
slowly; the amount of effort Simplify exerts for each invariant can be controlled
using both the daikon.simplify.Session.simplify_max_iterations and
daikon.simplify.Session.simplify_timeout configuration options.

4.3 Processing only part of the trace file

--ppt-select-pattern=ppt_regexp

Only process program points whose names match the regular expression. The --ppt-
omit-pattern argument takes precedence over this argument.

--ppt-omit-pattern=ppt_regexp

Do not process program points whose names match the regular expression. This takes
precedence over the --ppt-select-pattern argument.
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--var-select-pattern=var_regexp

Only process variables (whether in the trace file or derived) whose names match the
regular expression. The --var-omit-pattern argument takes precedence over this
argument.

--var-omit-pattern=var_regexp

Ignore variables (whether in the trace file or derived) whose names match the regular
expression. This takes priority over the --var-select-pattern argument.

All of the regular expressions used by Daikon use Java’s regular expression syntax.
Multiple items can be matched by using the logical or operator (‘|’), for example
var1|var2|var3. Java’s regular expression syntax is similar to Perl’s but not exactly the
same.

The ...-omit-pattern arguments take precedence: if a name matches an omit pattern, it is
excluded. If a name does not match an omit pattern, it is tested against the select pattern
(if any). If any select patterns are specified, the name must match one of the patterns in
order to be included. If no select patterns are specified, then any ‘ppt’ name that does not
match the omit patterns is included.

Using --ppt-select-pattern and --ppt-omit-pattern can save time even if there are
no samples for the excluded program points, as Daikon can skip the declarations and need
not initialize data structures that would be used if samples were encountered.

Front ends such as Chicory (see Section 7.1.1.1 [Program points in Chicory output],
page 93) and Kvasir (see Section 7.3.2 [Kvasir options], page 106), and other tools such as
DynComp (see Section 7.2.2 [DynComp for Java options], page 102) and PrintInvariants

(see Section 8.1.1 [Printing invariants], page 137), also support these command-line options
(Kvasir names them slightly differently). Passing the command-line option to the front end
means that the target program will run faster and the trace file will be smaller.

4.4 Daikon configuration options

--config filename

Load the configuration settings specified in the given file. See Section 6.1 [Configurat-
ion options], page 55, for details.

--config_option name=value

Specify a single configuration setting. See Section 6.1 [Configuration options], page 55,
for details.

4.5 Daikon debugging options

--dbg category

--debug

These debugging options cause output to be written to a log file (by default, to
the terminal); in other words, they enable a Logger. The --dbg category option
enables debugging output for a specific part of Daikon; it may be specified multiple
times, permitting fine-grained control over debugging output. The --debug option
turns on all debugging flags. (This produces a lot of output!) Most categories are
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class or package names in the Daikon implementation, such as daikon.split or
daikon.derive.binary.SequencesJoin. Only classes that check the appropriate
categories are affected by the debug flags; you can determine this by looking for a call
to Logger.getLogger in the specific class.

--track class<var1,var2,var3>@ppt

Turns on debugging information on the specified class, variables, and program point.
In contrast to the --dbg option, track logging follows a particular invariant through
Daikon. Multiple --track options can be specified. Each item (class, variables, and
program point) is optional. Multiple classes can be specified separated by vertical
bars (‘|’). Matching is a simple substring (not a regular expression) comparison.
Each item must match in order for a printout to occur. For more information, see
Section “Track logging” in Daikon Developer Manual.

--disc_reason inv_class<var1,var2,...>@ppt

Prints all discarded invariants of class inv class at the program point specified
that involve exactly the variables given, as well as a short reason and discard
code explaining why they were not worthy of print. Any of the three parts
of the argument may be made a wildcard by excluding it. For example,
‘inv_class’ and ‘<var1,var2,...>@ppt’ are valid arguments. Some concrete
examples are ‘Implication<x,y>@foo():::EXIT’, ‘<x,y>@foo():::EXIT’, and
‘Implication<x,y>’. To print all discarded invariants, use the argument ‘all’.

--mem_stat

Prints memory usage statistics into a file named stat.out in the current directory.
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5 Daikon output

Daikon outputs the invariants that it discovers in textual form to your terminal. This
chapter describes how to interpret those invariants — in other words, what do they mean?

Daikon also creates a .inv file that contains the invariants in serialized (binary) form. You
can use the .inv file to print the invariants (see Section 8.1.1 [Printing invariants], page 137)
in a variety of formats, to insert the invariants in your source code (see Section 8.1.4
[Annotate], page 140), to perform run-time checking of the invariants (see Section 8.1.6
[Runtime-check instrumenter], page 142, and Section 8.1.7 [InvariantChecker], page 144),
and to do various other operations. See Chapter 8 [Tools], page 137, for descriptions of such
tools.

If you wish to write your own tools for processing invariants, you have two general options.
You can parse Daikon’s textual output, or you can write Java code that processes the .inv
file. The .inv file is simply a serialized PptMap object. In addition to reading the Javadoc,
you can examine how the other tools use this data structure.

5.1 Invariant syntax

Daikon can produce output in a variety of formats. Each of the format names can be
specified as an argument to the --format argument of Daikon (see Section 4.1 [Options to
control Daikon output], page 18), PrintInvariants (see Section 8.1.1 [Printing invariants],
page 137), and Annotate (see Section 8.1.4 [Annotate], page 140). When passed on the
command line, the format names are case-insensitive: --format JML and --format jml

have the same effect.

You can enhance Daikon to produce output in other formats. See Section “New formatting
for invariants” in Daikon Developer Manual.

Daikon format
Daikon’s default format is a mix of Java, mathematical logic, and some additional
extensions. It is intended to concisely convey meaning to programmers.

DBC format
This format produces output in the design-by-contract (DBC) format expected by
Parasoft’s Jtest tool (https://www.parasoft.com).

ESC/Java format
ESC format

The Extended Static Checker for Java (ESC/Java) is a programming tool for finding
errors in Java programs by checking annotations that are inserted in source code;
for more details, see http://www.hpl.hp.com/downloads/crl/jtk/. Daikon’s
ESC/Java format (which can also be specified as ESC format) is intended for use with
the original ESC/Java tool. Use Daikon’s JML format for use with the ESC/Java2
tool.

Java format
Write output as Java expressions. This means that each invariant is a valid Java
expression, if inserted at the correct program point: right after method entry, for
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method entry invariants; right before method exit, for method exit invariants; or
anywhere in the code, for object invariants.

There are two exceptions. Method exit invariants that refer to ‘pre-state’, such
as ‘x == old(x) + 1’, are output with the tag ‘\old’ surrounding the ‘pre-state’
expression (e.g. ‘x == \old(x) + 1’. Method exit invariants that refer to the return
value of the method, such as ‘return == x + y’, are output with the tag ‘\result’ in
place of the return value (e.g. ‘\result == x + y’). These expression are obviously
not valid Java code.

JML format
Produces output in JVM (Java Modeling Language, http://www.jmlspecs.org);
for details, see the JML Manual. JML format lets you use the various JVM tools on
Daikon invariants, including runtime assertion checking and the ESC/Java2 tool.

Simplify format
Produces output in the format expected by the Simplify automated theorem prover;
for details, see the Simplify distribution.

CSharpContract format
Produces C# output for use with Microsoft’s Code Contracts http: / /

research.microsoft.com/en-us/projects/contracts/ . The format employs
some extension/utility methods to improve contract readability; the library
containing these methods can be found at https: / /github .com /twschiller /

daikon-code-contract-extensions.

5.2 Program points

A program point is a specific place in the source code, such as immediately before a
particular line of code. Daikon’s output is organized by program points.

For example, foo():::ENTER is the point at the entry to procedure foo(); the invariants
at that point are the preconditions for the foo() method, properties that are always true
when the procedure is invoked.

Likewise, foo():::EXIT is the program point at the procedure exit, and invariants there
are postconditions. When there are multiple exit points from a procedure (for instance,
because of multiple return statements), the different exits are differentiated by suffixing
them with their line numbers; for instance, StackAr.top():::EXIT79. The exit point
lacking a line number (in this example, StackAr.top():::EXIT) collects the postconditions
that are true at every numbered exit point. This is an example of a program point that
represents a collection of locations in the program source rather than a single location. This
concept is represented in Daikon by the dataflow hierarchy, see Section “Dataflow hierarchy”
in Daikon Developer Manual.

Two other program point tags that have special meaning to Daikon’s hierarchy organ-
ization are :::OBJECT and :::CLASS. The :::OBJECT tag indicates object invariants (som-
etimes called representation invariants or class invariants) over all the instance (member)
fields and static fields of the class. These properties always hold for any object of the given
class, from the point of view of a client or user. These properties hold at entry to and exit
from every public method of the class (except not the entry to constructors, when fields are
not yet initialized).
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The :::CLASS tag is just like :::OBJECT, but only for static variables, which have only one
value for all objects. Static fields and instance fields are often used for different purposes.
Daikon’s separation of the two types of fields permits programmers to see the properties
over the static fields without knowing which are the static fields and pick them out of the
:::OBJECT program point.

(By contrast, ESC/Java and JML make class invariants hold even at the entry and exit
of private methods. Their designers believe that most private methods preserve the class
invariant and are called only when the class invariant holds. ESC/Java and JML require an
explicit helper annotation to indicate a private method for which the class invariant does
not hold.)

The Java instrumenter Chicory selects names for program points that include an indi-
cation of the argument and return types for each method. These signatures are presented
in the JML format: one character for each primitive type (‘B’ for byte, ‘C’ for character, ‘Z’
for boolean (so as not to clash with byte), etc.); ‘Lclassname;’ for object types; and a ‘[’
prefix for each level of array nesting.

5.3 Variable names

A front end produces a trace file that associates trace variable names with values. Trace
variable names need not be exactly the same as the variables in the program. The trace
may contain values that are not held in any program variables; in this case, the front end
must make up a name to express that value (see below for examples).

Daikon ignores variable names when inferring invariants; it uses the names only when
performing output. (Thus, the only practical restriction on trace names is that the
VarInfoName parse method must be able to parse the name.)

By convention, trace variables are similar to program variables and field accesses. For
example, w and x.y.z are legal trace variables. (So are ‘a[i]’, and ‘a[0].next’, but these
are usually handled as derived variables instead; see below.) As in languages such as Java
and C, a period character represents field access and square brackets represent selecting an
element of a sequence.

In addition to variables that appear in the trace file, Daikon creates additional variables,
called derived variables, by combining trace variables. For example, for any array a and
integer i, Daikon creates a derived variable a[i]. This is not a variable in the program
(and this expression might not even appear in the source code), but it may still be useful to
compute invariants over this expression. For a list of derived variables and how to control
Daikon’s use of them, see Section 6.1.1.4 [Options to enable/disable derived variables],
page 72.

Some trace variables and derived variables may represent meaningless expressions; in
such a circumstance, the value is said to be nonsensical (see Section “Nonsensical values”
in Daikon Developer Manual).

The remainder of this section describes conventions for naming expressions. Those that
cannot be named by simple C/Java expressions are primarily related to arrays and sequen-
ces. (In part, these special expressions are necessary because Daikon can only handle var-
iables of scalar (integer, floating-point, boolean, String) and array-of-scalar types. Daikon
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cannot handle structs, classes, or multidimensional arrays or structures, but such data str-
uctures can be represented as scalars and arrays by choosing variable names that indicate
their relationship.)

• a[i] array access. a and i are themselves arbitrary variable names, of array and
integral type, respectively.

• a[-1] from-end array access. a[-1] denotes the last element of array a; it is syntactic
sugar for a[a.length-1].

• a[] array contents. For array-valued expression a, all of its elements, as a sequence.
Simply using the expression a means the identity (address or hashcode) of the array,
not a list of its elements. For two arrays a and b, ‘a=b’ implies ‘a[]=b[]’, but ‘a[]=b[]’
does not imply ‘a=b’.

• x.y, x->y field access. When field access is applied to a structure/class, it has the
usual meaning of selecting one field from the structure/class.

When field access is applied to an array, it means to map the field access across the
elements of the array. For example, if a is an array, then a[].foo is the sequence
consisting of the foo fields of each of the elements of a. Likewise, a[].foo.bar contains
the bar fields of a[].foo. By contrast, a.foo does not make sense, because one cannot
ask for the foo field of an address, and a[].foo[] would be a two-dimensional array.

• As in Java, x.getClass() is the runtime type of x, which may differ from its declared
type.

• a.length is the length (number of elements) of array a; this is not necessarily the
number of initialized or used elements.

• s.toString is the string value of String s, namely a sequence of characters.

• Classname.varname static class variable. Static variables of a class have names of the
form ‘classname.varname’

• orig(x) refers to the value of variable x upon entry to a procedure (because the proc-
edure body might modify the value of x). These variables appear only at :::EXIT

program points. Typically, orig() variables do not appear in the trace, but are aut-
omatically created by Daikon when it matches up :::ENTER and :::EXITnn program
points. See Section 5.3.1 [orig variable example], page 28.

This variable prints as orig when using Daikon output format (see Section 5.1 [Invar-
iant syntax], page 24), but may print differently in other formats (such as \old).

• post(x) refers to the value of variable x upon exit from a procedure. Such a value
is usually written simply x; the post prefix is needed only within an orig expression,
when the post-state value needs to be referenced. Just as orig may be used only in a
post-state context and specifies an expression to be evaluated in the ‘pre-state’, post
may be used only in a ‘pre-state’ context and specifies an expression to be evaluated
in the post-state. See Section 5.3.1 [orig variable example], page 28.

• /globalVar C global variable. In C output, global variables with external linkage are
prefixed with a slash. For instance, global /x is distinct from procedure parameter /x.
(In Java programs, variables can be distinguished by prefixing them with this. or, for
class-static variables, a class name.)
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• myfile_c/staticVar C static variable. In C output, file-static variables have names
of the form ‘filename/varname’, where periods (‘.’) in the filename are converted into
underscores (‘_’). For example, ‘Global_c/x’ is the name for a file-static variable x

declared in the file Global.c).

• myfile_c@funcname/funcStaticVar C function-scoped static variable. In C output,
for static variables which are declared within functions, an at-sign ‘@’ separates the
filename and the function name and then a slash separates the function name and var-
iable name (e.g., ‘Global_c@main/funcStaticVar’ for a static variable funcStaticVar
declared within the function main in the file Global.c).

Daikon’s current front ends do not produce output for local variables, only for variables
visible from outside a procedure. (Also see the --std-visibility option to Chicory,
Section 7.1.1 [Chicory options], page 92.) More generally, Daikon’s front ends produce
output at procedure exit and entry, not within the procedure. Thus, Daikon’s output
forms a specification from the view of a client of a procedure. If you wish to compute
invariants over local variables, you can extend one of Daikon’s front ends (or request us to
do so). An alternative that permits computing invariants at arbitrary locations is to call
a dummy procedure, passing all the variables of interest. The dummy procedure’s pre and
postconditions will be identical and will represent the invariants at the point of call.

The array introduction operator [] can made Daikon variables look slightly odd, but
it is intended to assist in interpreting the variables and to provide an indication that the
variable name cannot be substituted directly in a program as an expression.

Each array introduction operator [] increases the dimensionality of the variable, and
each array indexing operation [i] decreases it. Since all Daikon variables are scalars or
one-dimensional arrays, these operators must be matched up, or have at most one more
[] than [i]. (There is one exception: according to a strict interpretation of the rules,
the C/Java expression a[i] would turn into the Daikon variable a[][i], since it does not
change the dimensionality of any expression it appears in. However, that would be even
more confusing, and the point is to avoid confusion, so by convention Daikon front ends use
just a[i], not a[][i]. Strictly speaking, none of the [] operators is necessary, since a user
with a perfect knowledge of the type of each program variable and field could use that to
infer the type of any Daikon expression.)

5.3.1 orig() variable example

This section gives an example of use of orig() and post() variables and arrays.

Suppose you have initially that (in Java syntax)

int i = 0;

int[] a = new int[] { 22, 23 };

int[] b = new int[] { 46, 47 };

and then you run the following:

// pre-state values at this point

a[0] = 24;

a[1] = 25

a = b;

a[0] = 48;
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a[1] = 49;

i = 1;

// post-state values at this point

The values of various variables are as follows:

orig(a[i]) = 22

The value of a[i] in the ‘pre-state’: {22, 23}[0]

orig(a[])[orig(i)] = 22

This is the same as orig(a[i]): {22, 23}[0].

orig(a[])[i] = 23

The value of a[] in the ‘pre-state’ (which is an array object, not a reference),
indexed by the post-state value of i: {22, 23}[1]

orig(a)[orig(i)] = 24

orig(a) is the original value of the reference a, not a’s original elements: {24, 25}[0]

orig(a)[i] = 25

The original pointer value of a, indexed by the post-state value of i: {24, 25}[1]

a[orig(i)] = 48

In the post-state, a indexed by the original value of i: {48, 49}[0]

a[i] = 49

The value of a[i] in the post-state.

b = orig(b) = some hashcode

The identity of the array b has not changed.

b[] = [48, 49]

orig(b[]) = [46, 47]

For an array b, ‘b=orig(b)’ does not imply ‘b[]=orig(b[])’.

orig(a[post(i)]) = 23

The ‘pre-state’ value of a[1] (because the post-state value of i is 1): {22, 23}[1]

5.4 Interpreting Daikon output

If nothing gets printed before the ‘Exiting’ line, then Daikon found no invariants. You
can get a little bit more information by using the --output_num_samples flag to Daikon
(see Section 4.1 [Options to control Daikon output], page 18).

Daikon’s output is predicated on the assumption that all expressions that get evaluated
are sensible. For instance, if Daikon prints ‘a.b == 0’, then that means that if ‘a.b’ is
sensible (that is, ‘a’ is non-null), then its value is zero. When ‘a’ is ‘null’, then ‘a.b’
is called nonsensical. Daikon’s output ignores all nonsensical values. If you would like the
assumptions to be printed explicitly, then set the daikon.Daikon.guardNulls configuration
option (see Section 6.1.1.8 [General configuration options], page 77).
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5.4.1 Redundant invariants

By default, Daikon does not display redundant invariants — those that are implied by
other invariants in the output — because such results would merely clutter the output with-
out adding any valuable information. For instance, if Daikon reports ‘x==y’, then it never
also reports ‘x-1==y-1’. You can control this behavior to some extent by disabling invariant
filters; see Section 5.6 [Invariant filters], page 53. (You can also print all invariants, even
redundant ones, by saving the invariants to a .inv file and then using the PrintInvariants
(see Section 8.1.1 [Printing invariants], page 137) or Diff (see Section 8.1.3 [Invariant Diff],
page 138) programs to print the results.)

5.4.2 Equal variables

If two variables x and y are equal, then any invariant about x is also true about y. Daikon
chooses one variable (the leader) from the set of equal variables, and only prints invariants
over the leader.

Suppose that a = b = c. Then Daikon will print a = b and a = c, but not b = c. Furth-
ermore, Daikon might print a > d, but would not print b > d or c > d.

You can control which variables are in an equality set; see Section “Variable comparabil-
ity” in Daikon Developer Manual.

5.4.3 Has only one value variables

The output ‘var has only one value’ in Daikon’s output means that every time that
variable var was encountered, it had the same value. Daikon ordinarily reports the actual
value, as in ‘var == 22’. Typically, the “has only one value” output means that the variable
is a hashcode or address — that is, its declared type is ‘hashcode’ (see Section “Variable
declarations” in Daikon Developer Manual). For example, ‘var == 0x38E8A’ is not very
illuminating, but it is still interesting that var was never rebound to a different object.

Note that ‘var has only one value’ is different from saying that var is unmodified.

A variable might have only one value but not be reported as unmodified because the
variable is not a parameter to a procedure — for instance, if a routine always returns the
same object, or in a class invariant. A variable can be reported as unmodified but not have
only one value because the variable is never modified during any execution of the procedure,
but has different values on different invocations of the procedure.

5.4.4 Object inequality

Daikon may report ‘x < y’ where the operator ‘<’ is not applicable to the type of ‘x’ and
‘y’, as in ‘myString < otherString’.

In this case, the invariant means that the first expression is always less than the second,
according to the ‘Comparable.compareTo’ method.

5.5 Invariant list

The following is a list of all of the invariants that Daikon detects. Each invariant has
a configuration enable switch. By default most invariants are enabled. Any that are not
enabled by default are indicated below. Some invariants also have additional configuration
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switches that control their behavior. These are indicated below as well. See Section 6.1.1.2
[Options to enable/disable specific invariants], page 56.

AndJoiner
This is a special invariant used internally by Daikon to represent an antecedent invar-
iant in an implication where that antecedent consists of two invariants anded together.

CommonFloatSequence
Represents sequences of double values that contain a common subset. Prints as {e1,
e2, e3, ...} subset of x[].

This invariant is not enabled by default. See the configuration option
‘daikon.inv.unary.sequence.CommonFloatSequence.enabled’.

See also the following configuration option:

• ‘daikon.inv.unary.sequence.CommonFloatSequence.hashcode_seqs’

CommonSequence
Represents sequences of long values that contain a common subset. Prints as {e1,

e2, e3, ...} subset of x[].

This invariant is not enabled by default. See the configuration option
‘daikon.inv.unary.sequence.CommonSequence.enabled’.

See also the following configuration option:

• ‘daikon.inv.unary.sequence.CommonSequence.hashcode_seqs’

CommonStringSequence
Represents string sequences that contain a common subset. Prints as {s1, s2, s3,

...} subset of x[].

This invariant is not enabled by default. See the configuration option
‘daikon.inv.unary.stringsequence.CommonStringSequence.enabled’.

CompleteOneOfScalar
Tracks every unique value and how many times it occurs. Prints as x has values:

v1 v2 v3 ....

This invariant is not enabled by default. See the configuration option
‘daikon.inv.unary.scalar.CompleteOneOfScalar.enabled’.

CompleteOneOfString
Tracks every unique value and how many times it occurs. Prints as either x has no

values or as x has values: "v1" "v2" "v3" ....

This invariant is not enabled by default. See the configuration option
‘daikon.inv.unary.string.CompleteOneOfString.enabled’.

DummyInvariant
This is a special invariant used internally by Daikon to represent invariants whose
meaning Daikon doesn’t understand. The only operation that can be performed on a
DummyInvariant is to print it. In particular, the invariant cannot be tested against
a sample: the invariant is always assumed to hold and is always considered to be
statistically justified.
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The main use for a dummy invariant is to represent a splitting condition that appears
in a .spinfo file. The .spinfo file can indicate an arbitrary Java expression, which
might not be equivalent to any invariant in Daikon’s grammar.

Ordinarily, Daikon uses splitting conditions to split data, then seeks to use that split
data to form conditional invariants out of its standard built-in invariants. If you wish
the expression in the .spinfo file to be printed as an invariant, whether or not it is
itself discovered by Daikon during invariant detection, then the configuration option
daikon.split.PptSplitter.dummy_invariant_level must be set, and formatting
information must be supplied in the splitter info file.

EltLowerBound
Represents the invariant that each element of a sequence of long values is greater than
or equal to a constant. Prints as x[] elements >= c.

See also the following configuration options:

• ‘daikon.inv.unary.sequence.EltLowerBound.minimal_interesting’

• ‘daikon.inv.unary.sequence.EltLowerBound.maximal_interesting’

EltLowerBoundFloat
Represents the invariant that each element of a sequence of double values is greater
than or equal to a constant. Prints as x[] elements >= c.

See also the following configuration options:

• ‘daikon.inv.unary.sequence.EltLowerBoundFloat.minimal_interesting’

• ‘daikon.inv.unary.sequence.EltLowerBoundFloat.maximal_interesting’

EltNonZero
Represents the invariant "x != 0" where x represents all of the elements of a sequence
of long. Prints as x[] elements != 0.

EltNonZeroFloat
Represents the invariant "x != 0" where x represents all of the elements of a sequence
of double. Prints as x[] elements != 0.

EltOneOf
Represents sequences of long values where the elements of the sequence take on only
a few distinct values. Prints as either x[] == c (when there is only one value), or as
x[] one of {c1, c2, c3} (when there are multiple values).

See also the following configuration options:

• ‘daikon.inv.unary.sequence.EltOneOf.size’

• ‘daikon.inv.unary.sequence.EltOneOf.omit_hashcode_values_Simplify’

EltOneOfFloat
Represents sequences of double values where the elements of the sequence take on
only a few distinct values. Prints as either x[] == c (when there is only one value),
or as x[] one of {c1, c2, c3} (when there are multiple values).
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See also the following configuration option:

• ‘daikon.inv.unary.sequence.EltOneOfFloat.size’

EltOneOfString
Represents sequences of String values where the elements of the sequence take on only
a few distinct values. Prints as either x[] == c (when there is only one value), or as
x[] one of {c1, c2, c3} (when there are multiple values).

See also the following configuration option:

• ‘daikon.inv.unary.stringsequence.EltOneOfString.size’

EltRangeFloat.EqualMinusOne
Internal invariant representing double scalars that are equal to minus one. Used for
non-instantiating suppressions. Will never print since OneOf accomplishes the same
thing

EltRangeFloat.EqualOne
Internal invariant representing double scalars that are equal to one. Used for non-
instantiating suppressions. Will never print since OneOf accomplishes the same thing

EltRangeFloat.EqualZero
Internal invariant representing double scalars that are equal to zero. Used for non-
instantiating suppressions. Will never print since OneOf accomplishes the same thing.

EltRangeFloat.GreaterEqual64
Internal invariant representing double scalars that are greater than or equal to 64.
Used for non-instantiating suppressions. Will never print since Bound accomplishes
the same thing

EltRangeFloat.GreaterEqualZero
Internal invariant representing double scalars that are greater than or equal to 0.
Used for non-instantiating suppressions. Will never print since Bound accomplishes
the same thing

EltRangeInt.BooleanVal
Internal invariant representing longs whose values are always 0 or 1. Used for non-
instantiating suppressions. Will never print since OneOf accomplishes the same thing.

EltRangeInt.Bound0 63
Internal invariant representing longs whose values are between 0 and 63. Used for
non-instantiating suppressions. Will never print since Bound accomplishes the same
thing.

EltRangeInt.EqualMinusOne
Internal invariant representing long scalars that are equal to minus one. Used for
non-instantiating suppressions. Will never print since OneOf accomplishes the same
thing

EltRangeInt.EqualOne
Internal invariant representing long scalars that are equal to one. Used for non-
instantiating suppressions. Will never print since OneOf accomplishes the same thing
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EltRangeInt.EqualZero
Internal invariant representing long scalars that are equal to zero. Used for non-
instantiating suppressions. Will never print since OneOf accomplishes the same thing.

EltRangeInt.Even
Invariant representing longs whose values are always even. Used for non-instantiating
suppressions. Since this is not covered by the Bound or OneOf invariants it is printed.
Prints as x is even.

This invariant is not enabled by default. See the configuration option
‘daikon.inv.unary.sequence.EltRangeInt.Even.enabled’.

EltRangeInt.GreaterEqual64
Internal invariant representing long scalars that are greater than or equal to 64. Used
for non-instantiating suppressions. Will never print since Bound accomplishes the
same thing

EltRangeInt.GreaterEqualZero
Internal invariant representing long scalars that are greater than or equal to 0. Used
for non-instantiating suppressions. Will never print since Bound accomplishes the
same thing

EltRangeInt.PowerOfTwo
Invariant representing longs whose values are always a power of 2 (exactly one bit is
set). Used for non-instantiating suppressions. Since this is not covered by the Bound
or OneOf invariants it is printed. Prints as x is a power of 2.

EltUpperBound
Represents the invariant that each element of a sequence of long values is less than
or equal to a constant. Prints as x[] elements <= c.

See also the following configuration options:

• ‘daikon.inv.unary.sequence.EltUpperBound.minimal_interesting’

• ‘daikon.inv.unary.sequence.EltUpperBound.maximal_interesting’

EltUpperBoundFloat
Represents the invariant that each element of a sequence of double values is less than
or equal to a constant. Prints as x[] elements <= c.

See also the following configuration options:

• ‘daikon.inv.unary.sequence.EltUpperBoundFloat.minimal_interesting’

• ‘daikon.inv.unary.sequence.EltUpperBoundFloat.maximal_interesting’

EltwiseFloatEqual
Represents equality between adjacent elements (x[i], x[i+1]) of a double sequence.
Prints as x[] elements are equal.

EltwiseFloatGreaterEqual
Represents the invariant >= between adjacent elements (x[i], x[i+1]) of a double sequ-
ence. Prints as x[] sorted by >=.

EltwiseFloatGreaterThan
Represents the invariant > between adjacent elements (x[i], x[i+1]) of a double sequ-
ence. Prints as x[] sorted by >.
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EltwiseFloatLessEqual
Represents the invariant <= between adjacent elements (x[i], x[i+1]) of a double sequ-
ence. Prints as x[] sorted by <=.

EltwiseFloatLessThan
Represents the invariant < between adjacent elements (x[i], x[i+1]) of a double sequ-
ence. Prints as x[] sorted by <.

EltwiseIntEqual
Represents equality between adjacent elements (x[i], x[i+1]) of a long sequence. Prints
as x[] elements are equal.

EltwiseIntGreaterEqual
Represents the invariant >= between adjacent elements (x[i], x[i+1]) of a long sequence.
Prints as x[] sorted by >=.

EltwiseIntGreaterThan
Represents the invariant > between adjacent elements (x[i], x[i+1]) of a long sequence.
Prints as x[] sorted by >.

EltwiseIntLessEqual
Represents the invariant <= between adjacent elements (x[i], x[i+1]) of a long sequence.
Prints as x[] sorted by <=.

EltwiseIntLessThan
Represents the invariant < between adjacent elements (x[i], x[i+1]) of a long sequence.
Prints as x[] sorted by <.

Equality
Keeps track of sets of variables that are equal. Other invariants are instantiated for
only one member of the Equality set, the leader. If variables x, y, and z are members
of the Equality set and x is chosen as the leader, then the Equality will internally
convert into binary comparison invariants that print as x == y and x == z.

FloatEqual
Represents an invariant of == between two double scalars. Prints as x == y.

FloatGreaterEqual
Represents an invariant of >= between two double scalars. Prints as x >= y.

FloatGreaterThan
Represents an invariant of > between two double scalars. Prints as x > y.

FloatLessEqual
Represents an invariant of <= between two double scalars. Prints as x <= y.

FloatLessThan
Represents an invariant of < between two double scalars. Prints as x < y.

FloatNonEqual
Represents an invariant of != between two double scalars. Prints as x != y.

FunctionBinary.BitwiseAndLong {xyz, yxz, zxy}
Represents the invariant x = BitwiseAnd(y, z) over three long scalars. Since the
function is symmetric, only the permutations xyz, yxz, and zxy are checked.
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FunctionBinary.BitwiseOrLong {xyz, yxz, zxy}
Represents the invariant x = BitwiseOr(y, z) over three long scalars. Since the
function is symmetric, only the permutations xyz, yxz, and zxy are checked.

FunctionBinary.BitwiseXorLong {xyz, yxz, zxy}
Represents the invariant x = BitwiseXor(y, z) over three long scalars. Since the
function is symmetric, only the permutations xyz, yxz, and zxy are checked.

FunctionBinary.DivisionLong {xyz, xzy, yxz, yzx, zxy, zyx}
Represents the invariant x = Division(y, z) over three long scalars. Since the fun-
ction is non-symmetric, all six permutations of the variables are checked.

FunctionBinary.GcdLong {xyz, yxz, zxy}
Represents the invariant x = Gcd(y, z) over three long scalars. Since the function is
symmetric, only the permutations xyz, yxz, and zxy are checked.

FunctionBinary.LogicalAndLong {xyz, yxz, zxy}
Represents the invariant x = LogicalAnd(y, z) over three long scalars. For logical
operations, Daikon treats 0 as false and all other values as true. Since the function is
symmetric, only the permutations xyz, yxz, and zxy are checked.

FunctionBinary.LogicalOrLong {xyz, yxz, zxy}
Represents the invariant x = LogicalOr(y, z) over three long scalars. For logical
operations, Daikon treats 0 as false and all other values as true. Since the function is
symmetric, only the permutations xyz, yxz, and zxy are checked.

FunctionBinary.LogicalXorLong {xyz, yxz, zxy}
Represents the invariant x = LogicalXor(y, z) over three long scalars. For logical
operations, Daikon treats 0 as false and all other values as true. Since the function is
symmetric, only the permutations xyz, yxz, and zxy are checked.

FunctionBinary.LshiftLong {xyz, xzy, yxz, yzx, zxy, zyx}
Represents the invariant x = Lshift(y, z) over three long scalars. Since the function
is non-symmetric, all six permutations of the variables are checked.

FunctionBinary.MaximumLong {xyz, yxz, zxy}
Represents the invariant x = Maximum(y, z) over three long scalars. Since the funct-
ion is symmetric, only the permutations xyz, yxz, and zxy are checked.

FunctionBinary.MinimumLong {xyz, yxz, zxy}
Represents the invariant x = Minimum(y, z) over three long scalars. Since the funct-
ion is symmetric, only the permutations xyz, yxz, and zxy are checked.

FunctionBinary.ModLong {xyz, xzy, yxz, yzx, zxy, zyx}
Represents the invariant x = Mod(y, z) over three long scalars. Since the function is
non-symmetric, all six permutations of the variables are checked.

FunctionBinary.MultiplyLong {xyz, yxz, zxy}
Represents the invariant x = Multiply(y, z) over three long scalars. Since the fun-
ction is symmetric, only the permutations xyz, yxz, and zxy are checked.

FunctionBinary.PowerLong {xyz, xzy, yxz, yzx, zxy, zyx}
Represents the invariant x = Power(y, z) over three long scalars. Since the function
is non-symmetric, all six permutations of the variables are checked.
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FunctionBinary.RshiftSignedLong {xyz, xzy, yxz, yzx, zxy, zyx}
Represents the invariant x = RshiftSigned(y, z) over three long scalars. Since the
function is non-symmetric, all six permutations of the variables are checked.

FunctionBinary.RshiftUnsignedLong {xyz, xzy, yxz, yzx, zxy, zyx}
Represents the invariant x = RshiftUnsigned(y, z) over three long scalars. Since
the function is non-symmetric, all six permutations of the variables are checked.

FunctionBinaryFloat.DivisionDouble {xyz, xzy, yxz, yzx, zxy, zyx}
Represents the invariant x = Division(y, z) over three double scalars. Since the
function is non-symmetric, all six permutations of the variables are checked.

FunctionBinaryFloat.MaximumDouble {xyz, yxz, zxy}
Represents the invariant x = Maximum(y, z) over three double scalars. Since the
function is symmetric, only the permutations xyz, yxz, and zxy are checked.

FunctionBinaryFloat.MinimumDouble {xyz, yxz, zxy}
Represents the invariant x = Minimum(y, z) over three double scalars. Since the
function is symmetric, only the permutations xyz, yxz, and zxy are checked.

FunctionBinaryFloat.MultiplyDouble {xyz, yxz, zxy}
Represents the invariant x = Multiply(y, z) over three double scalars. Since the
function is symmetric, only the permutations xyz, yxz, and zxy are checked.

GuardingImplication
This is a special implication invariant that guards any invariants that are over var-
iables that are sometimes missing. For example, if the invariant a.x = 0 is true, the
guarded implication is a != null \rArr; a.x = 0.

Implication
The Implication invariant class is used internally within Daikon to handle invariants
that are only true when certain other conditions are also true (splitting).

IntEqual
Represents an invariant of == between two long scalars. Prints as x == y.

IntGreaterEqual
Represents an invariant of >= between two long scalars. Prints as x >= y.

IntGreaterThan
Represents an invariant of > between two long scalars. Prints as x > y.

IntLessEqual
Represents an invariant of <= between two long scalars. Prints as x <= y.

IntLessThan
Represents an invariant of < between two long scalars. Prints as x < y.

IntNonEqual
Represents an invariant of != between two long scalars. Prints as x != y.

See also the following configuration option:

• ‘daikon.inv.binary.twoScalar.IntNonEqual.integral_only’
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IsPointer
IsPointer is an invariant that heuristically determines whether an integer represents
a pointer (a 32-bit memory address). Since both a 32-bit integer and an address have
the same representation, sometimes a a pointer can be mistaken for an integer. When
this happens, several scalar invariants are computed for integer variables. Most of
them would not make any sense for pointers. Determining whether a 32-bit variable
is a pointer can thus spare the computation of many irrelevant invariants.

The basic approach is to discard the invariant if any values that are not valid pointers
are encountered. By default values between -100,000 and 100,000 (except 0) are
considered to be invalid pointers. This approach has been experimentally confirmed
on Windows x86 executables.

This invariant is not enabled by default. See the configuration option
‘daikon.inv.unary.scalar.IsPointer.enabled’.

LinearBinary
Represents a Linear invariant between two long scalars x and y, of the form ax + by

+ c = 0. The constants a, b and c are mutually relatively prime, and the constant a
is always positive.

LinearBinaryFloat
Represents a Linear invariant between two double scalars x and y, of the form ax +

by + c = 0. The constants a, b and c are mutually relatively prime, and the constant
a is always positive.

LinearTernary
Represents a Linear invariant over three long scalars x, y, and z, of the form ax +

by + cz + d = 0. The constants a, b, c, and d are mutually relatively prime, and the
constant a is always positive.

LinearTernaryFloat
Represents a Linear invariant over three double scalars x, y, and z, of the form ax +

by + cz + d = 0. The constants a, b, c, and d are mutually relatively prime, and the
constant a is always positive.

LowerBound
Represents the invariant x >= c, where c is a constant and x is a long scalar.

See also the following configuration options:

• ‘daikon.inv.unary.scalar.LowerBound.minimal_interesting’

• ‘daikon.inv.unary.scalar.LowerBound.maximal_interesting’

LowerBoundFloat
Represents the invariant x >= c, where c is a constant and x is a double scalar.

See also the following configuration options:

• ‘daikon.inv.unary.scalar.LowerBoundFloat.minimal_interesting’

• ‘daikon.inv.unary.scalar.LowerBoundFloat.maximal_interesting’
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Member
Represents long scalars that are always members of a sequence of long values. Prints
as x in y[] where x is a long scalar and y[] is a sequence of long.

MemberFloat
Represents double scalars that are always members of a sequence of double values.
Prints as x in y[] where x is a double scalar and y[] is a sequence of double.

MemberString
Represents String scalars that are always members of a sequence of String values.
Prints as x in y[] where x is a String scalar and y[] is a sequence of String.

Modulus
Represents the invariant x == r (mod m) where x is a long scalar variable, r is the
(constant) remainder, and m is the (constant) modulus.

This invariant is not enabled by default. See the configuration option
‘daikon.inv.unary.scalar.Modulus.enabled’.

NoDuplicates
Represents sequences of long that contain no duplicate elements. Prints as x[]

contains no duplicates.

This invariant is not enabled by default. See the configuration option
‘daikon.inv.unary.sequence.NoDuplicates.enabled’.

NoDuplicatesFloat
Represents sequences of double that contain no duplicate elements. Prints as x[]

contains no duplicates.

This invariant is not enabled by default. See the configuration option
‘daikon.inv.unary.sequence.NoDuplicatesFloat.enabled’.

NonModulus
Represents long scalars that are never equal to r (mod m) where all other numbers in
the same range (i.e., all the values that x doesn’t take from min(x) to max(x)) are
equal to r (mod m). Prints as x != r (mod m), where r is the remainder and m is the
modulus.

This invariant is not enabled by default. See the configuration option
‘daikon.inv.unary.scalar.NonModulus.enabled’.

NonZero
Represents long scalars that are non-zero. Prints as x != 0, or as x != null for pointer
types.

NonZeroFloat
Represents double scalars that are non-zero. Prints as x != 0.

NumericFloat.Divides
Represents the divides without remainder invariant between two double scalars.
Prints as x % y == 0.

NumericFloat.Square
Represents the square invariant between two double scalars. Prints as x = y**2.
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NumericFloat.ZeroTrack
Represents the zero tracks invariant between two double scalars; that is, when x is
zero, y is also zero. Prints as x = 0 -> y = 0.

This invariant is not enabled by default. See the configuration option
‘daikon.inv.binary.twoScalar.NumericFloat.ZeroTrack.enabled’.

NumericInt.BitwiseAndZero
Represents the BitwiseAnd == 0 invariant between two long scalars; that is, x and y

have no bits in common. Prints as x & y == 0.

This invariant is not enabled by default. See the configuration option
‘daikon.inv.binary.twoScalar.NumericInt.BitwiseAndZero.enabled’.

NumericInt.BitwiseComplement
Represents the bitwise complement invariant between two long scalars. Prints as x =

~y.

This invariant is not enabled by default. See the configuration option
‘daikon.inv.binary.twoScalar.NumericInt.BitwiseComplement.enabled’.

NumericInt.BitwiseSubset
Represents the bitwise subset invariant between two long scalars; that is, the bits of
y are a subset of the bits of x. Prints as x = y | x.

This invariant is not enabled by default. See the configuration option
‘daikon.inv.binary.twoScalar.NumericInt.BitwiseSubset.enabled’.

NumericInt.Divides
Represents the divides without remainder invariant between two long scalars. Prints
as x % y == 0.

NumericInt.ShiftZero
Represents the ShiftZero invariant between two long scalars; that is, x right-shifted
by y is always zero. Prints as x >> y = 0.

This invariant is not enabled by default. See the configuration option
‘daikon.inv.binary.twoScalar.NumericInt.ShiftZero.enabled’.

NumericInt.Square
Represents the square invariant between two long scalars. Prints as x = y**2.

NumericInt.ZeroTrack
Represents the zero tracks invariant between two long scalars; that is, when x is zero,
y is also zero. Prints as x = 0 -> y = 0.

This invariant is not enabled by default. See the configuration option
‘daikon.inv.binary.twoScalar.NumericInt.ZeroTrack.enabled’.

OneOfFloat
Represents double variables that take on only a few distinct values. Prints as either
x == c (when there is only one value) or as x one of {c1, c2, c3} (when there are
multiple values).

See also the following configuration option:

• ‘daikon.inv.unary.scalar.OneOfFloat.size’
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OneOfFloatSequence
Represents double[] variables that take on only a few distinct values. Prints as either
x == c (when there is only one value) or as x one of {c1, c2, c3} (when there are
multiple values).

See also the following configuration option:

• ‘daikon.inv.unary.sequence.OneOfFloatSequence.size’

OneOfScalar
Represents long scalars that take on only a few distinct values. Prints as either x

== c (when there is only one value), x one of {c1, c2, c3} (when there are multiple
values), or x has only one value (when x is a hashcode (pointer) - this is because
the numerical value of the hashcode (pointer) is uninteresting).

See also the following configuration options:

• ‘daikon.inv.unary.scalar.OneOfScalar.size’

• ‘daikon.inv.unary.scalar.OneOfScalar.omit_hashcode_values_Simplify’

OneOfSequence
Represents long[] variables that take on only a few distinct values. Prints as either
x == c (when there is only one value) or as x one of {c1, c2, c3} (when there are
multiple values).

See also the following configuration options:

• ‘daikon.inv.unary.sequence.OneOfSequence.size’

• ‘daikon.inv.unary.sequence.OneOfSequence.omit_hashcode_values_Simplify’

OneOfString
Represents String variables that take on only a few distinct values. Prints as either
x == c (when there is only one value) or as x one of {c1, c2, c3} (when there are
multiple values).

See also the following configuration option:

• ‘daikon.inv.unary.string.OneOfString.size’

OneOfStringSequence
Represents String[] variables that take on only a few distinct values. Prints as either
x == c (when there is only one value) or as x one of {c1, c2, c3} (when there are
multiple values).

See also the following configuration option:

• ‘daikon.inv.unary.stringsequence.OneOfStringSequence.size’

PairwiseFloatEqual
Represents an invariant between corresponding elements of two sequences of double
values. The length of the sequences must match for the invariant to hold. A
comparison is made over each (x[i], y[i]) pair. Thus, x[0] is compared to y[0],
x[1] to y[1], and so forth. Prints as x[] == y[].

PairwiseFloatGreaterEqual
Represents an invariant between corresponding elements of two sequences of double
values. The length of the sequences must match for the invariant to hold. A
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comparison is made over each (x[i], y[i]) pair. Thus, x[0] is compared to y[0],
x[1] to y[1], and so forth. Prints as x[] >= y[].

PairwiseFloatGreaterThan
Represents an invariant between corresponding elements of two sequences of double
values. The length of the sequences must match for the invariant to hold. A
comparison is made over each (x[i], y[i]) pair. Thus, x[0] is compared to y[0],
x[1] to y[1], and so forth. Prints as x[] > y[].

PairwiseFloatLessEqual
Represents an invariant between corresponding elements of two sequences of double
values. The length of the sequences must match for the invariant to hold. A
comparison is made over each (x[i], y[i]) pair. Thus, x[0] is compared to y[0],
x[1] to y[1], and so forth. Prints as x[] <= y[].

PairwiseFloatLessThan
Represents an invariant between corresponding elements of two sequences of double
values. The length of the sequences must match for the invariant to hold. A
comparison is made over each (x[i], y[i]) pair. Thus, x[0] is compared to y[0],
x[1] to y[1], and so forth. Prints as x[] < y[].

PairwiseIntEqual
Represents an invariant between corresponding elements of two sequences of long val-
ues. The length of the sequences must match for the invariant to hold. A comparison
is made over each (x[i], y[i]) pair. Thus, x[0] is compared to y[0], x[1] to y[1],
and so forth. Prints as x[] == y[].

PairwiseIntGreaterEqual
Represents an invariant between corresponding elements of two sequences of long val-
ues. The length of the sequences must match for the invariant to hold. A comparison
is made over each (x[i], y[i]) pair. Thus, x[0] is compared to y[0], x[1] to y[1],
and so forth. Prints as x[] >= y[].

PairwiseIntGreaterThan
Represents an invariant between corresponding elements of two sequences of long val-
ues. The length of the sequences must match for the invariant to hold. A comparison
is made over each (x[i], y[i]) pair. Thus, x[0] is compared to y[0], x[1] to y[1],
and so forth. Prints as x[] > y[].

PairwiseIntLessEqual
Represents an invariant between corresponding elements of two sequences of long val-
ues. The length of the sequences must match for the invariant to hold. A comparison
is made over each (x[i], y[i]) pair. Thus, x[0] is compared to y[0], x[1] to y[1],
and so forth. Prints as x[] <= y[].

PairwiseIntLessThan
Represents an invariant between corresponding elements of two sequences of long val-
ues. The length of the sequences must match for the invariant to hold. A comparison
is made over each (x[i], y[i]) pair. Thus, x[0] is compared to y[0], x[1] to y[1],
and so forth. Prints as x[] < y[].
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PairwiseLinearBinary
Represents a linear invariant (i.e., y = ax + b) between the corresponding elements of
two sequences of long values. Each (x[i], y[i]) pair is examined. Thus, x[0] is
compared to y[0], x[1] to y[1] and so forth. Prints as y[] = a * x[] + b.

PairwiseLinearBinaryFloat
Represents a linear invariant (i.e., y = ax + b) between the corresponding elements of
two sequences of double values. Each (x[i], y[i]) pair is examined. Thus, x[0] is
compared to y[0], x[1] to y[1] and so forth. Prints as y[] = a * x[] + b.

PairwiseNumericFloat.Divides
Represents the divides without remainder invariant between corresponding elements
of two sequences of double. Prints as x[] % y[] == 0.

PairwiseNumericFloat.Square
Represents the square invariant between corresponding elements of two sequences of
double. Prints as x[] = y[]**2.

PairwiseNumericFloat.ZeroTrack
Represents the zero tracks invariant between corresponding elements of two sequences
of double; that is, when x[] is zero, y[] is also zero. Prints as x[] = 0 -> y[] = 0.

This invariant is not enabled by default. See the configuration option
‘daikon.inv.binary.twoSequence.PairwiseNumericFloat.ZeroTrack.enabled’.

PairwiseNumericInt.BitwiseAndZero
Represents the BitwiseAnd == 0 invariant between corresponding elements of two
sequences of long; that is, x[] and y[] have no bits in common. Prints as x[] & y[]

== 0.

This invariant is not enabled by default. See the configuration option
‘daikon.inv.binary.twoSequence.PairwiseNumericInt.BitwiseAndZero.enabled’.

PairwiseNumericInt.BitwiseComplement
Represents the bitwise complement invariant between corresponding elements of two
sequences of long. Prints as x[] = ~y[].

This invariant is not enabled by default. See the configuration option
‘daikon.inv.binary.twoSequence.PairwiseNumericInt.BitwiseComplement.enabled’.

PairwiseNumericInt.BitwiseSubset
Represents the bitwise subset invariant between corresponding elements of two sequ-
ences of long; that is, the bits of y[] are a subset of the bits of x[]. Prints as x[] =

y[] | x[].

This invariant is not enabled by default. See the configuration option
‘daikon.inv.binary.twoSequence.PairwiseNumericInt.BitwiseSubset.enabled’.

PairwiseNumericInt.Divides
Represents the divides without remainder invariant between corresponding elements
of two sequences of long. Prints as x[] % y[] == 0.

PairwiseNumericInt.ShiftZero
Represents the ShiftZero invariant between corresponding elements of two sequences
of long; that is, x[] right-shifted by y[] is always zero. Prints as x[] >> y[] = 0.
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This invariant is not enabled by default. See the configuration option
‘daikon.inv.binary.twoSequence.PairwiseNumericInt.ShiftZero.enabled’.

PairwiseNumericInt.Square
Represents the square invariant between corresponding elements of two sequences of
long. Prints as x[] = y[]**2.

PairwiseNumericInt.ZeroTrack
Represents the zero tracks invariant between corresponding elements of two sequences
of long; that is, when x[] is zero, y[] is also zero. Prints as x[] = 0 -> y[] = 0.

This invariant is not enabled by default. See the configuration option
‘daikon.inv.binary.twoSequence.PairwiseNumericInt.ZeroTrack.enabled’.

PairwiseString.SubString
Represents the substring invariant between corresponding elements of two sequences
of String. Prints as x[] is a substring of y[].

This invariant is not enabled by default. See the configuration option
‘daikon.inv.binary.twoSequence.PairwiseString.SubString.enabled’.

PairwiseStringEqual
Represents an invariant between corresponding elements of two sequences of String
values. The length of the sequences must match for the invariant to hold. A
comparison is made over each (x[i], y[i]) pair. Thus, x[0] is compared to y[0],
x[1] to y[1], and so forth. Prints as x[] == y[].

PairwiseStringGreaterEqual
Represents an invariant between corresponding elements of two sequences of String
values. The length of the sequences must match for the invariant to hold. A
comparison is made over each (x[i], y[i]) pair. Thus, x[0] is compared to y[0],
x[1] to y[1], and so forth. Prints as x[] >= y[].

PairwiseStringGreaterThan
Represents an invariant between corresponding elements of two sequences of String
values. The length of the sequences must match for the invariant to hold. A
comparison is made over each (x[i], y[i]) pair. Thus, x[0] is compared to y[0],
x[1] to y[1], and so forth. Prints as x[] > y[].

PairwiseStringLessEqual
Represents an invariant between corresponding elements of two sequences of String
values. The length of the sequences must match for the invariant to hold. A
comparison is made over each (x[i], y[i]) pair. Thus, x[0] is compared to y[0],
x[1] to y[1], and so forth. Prints as x[] <= y[].

PairwiseStringLessThan
Represents an invariant between corresponding elements of two sequences of String
values. The length of the sequences must match for the invariant to hold. A
comparison is made over each (x[i], y[i]) pair. Thus, x[0] is compared to y[0],
x[1] to y[1], and so forth. Prints as x[] < y[].
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Positive
Represents the invariant x > 0 where x is a long scalar. This exists only as an example
for the purposes of the manual. It isn’t actually used (it is replaced by the more
general invariant LowerBound).

PrintableString
Represents a string that contains only printable ascii characters (values 32 through
126 plus 9 (tab)

This invariant is not enabled by default. See the configuration option
‘daikon.inv.unary.string.PrintableString.enabled’.

RangeFloat.EqualMinusOne
Internal invariant representing double scalars that are equal to minus one. Used for
non-instantiating suppressions. Will never print since OneOf accomplishes the same
thing

RangeFloat.EqualOne
Internal invariant representing double scalars that are equal to one. Used for non-
instantiating suppressions. Will never print since OneOf accomplishes the same thing

RangeFloat.EqualZero
Internal invariant representing double scalars that are equal to zero. Used for non-
instantiating suppressions. Will never print since OneOf accomplishes the same thing.

RangeFloat.GreaterEqual64
Internal invariant representing double scalars that are greater than or equal to 64.
Used for non-instantiating suppressions. Will never print since Bound accomplishes
the same thing

RangeFloat.GreaterEqualZero
Internal invariant representing double scalars that are greater than or equal to 0.
Used for non-instantiating suppressions. Will never print since Bound accomplishes
the same thing

RangeInt.BooleanVal
Internal invariant representing longs whose values are always 0 or 1. Used for non-
instantiating suppressions. Will never print since OneOf accomplishes the same thing.

RangeInt.Bound0 63
Internal invariant representing longs whose values are between 0 and 63. Used for
non-instantiating suppressions. Will never print since Bound accomplishes the same
thing.

RangeInt.EqualMinusOne
Internal invariant representing long scalars that are equal to minus one. Used for
non-instantiating suppressions. Will never print since OneOf accomplishes the same
thing

RangeInt.EqualOne
Internal invariant representing long scalars that are equal to one. Used for non-
instantiating suppressions. Will never print since OneOf accomplishes the same thing
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RangeInt.EqualZero
Internal invariant representing long scalars that are equal to zero. Used for non-
instantiating suppressions. Will never print since OneOf accomplishes the same thing.

RangeInt.Even
Invariant representing longs whose values are always even. Used for non-instantiating
suppressions. Since this is not covered by the Bound or OneOf invariants it is printed.
Prints as x is even.

This invariant is not enabled by default. See the configuration option
‘daikon.inv.unary.scalar.RangeInt.Even.enabled’.

RangeInt.GreaterEqual64
Internal invariant representing long scalars that are greater than or equal to 64. Used
for non-instantiating suppressions. Will never print since Bound accomplishes the
same thing

RangeInt.GreaterEqualZero
Internal invariant representing long scalars that are greater than or equal to 0. Used
for non-instantiating suppressions. Will never print since Bound accomplishes the
same thing

RangeInt.PowerOfTwo
Invariant representing longs whose values are always a power of 2 (exactly one bit is
set). Used for non-instantiating suppressions. Since this is not covered by the Bound
or OneOf invariants it is printed. Prints as x is a power of 2.

Reverse
Represents two sequences of long where one is in the reverse order of the other. Prints
as x[] is the reverse of y[].

ReverseFloat
Represents two sequences of double where one is in the reverse order of the other.
Prints as x[] is the reverse of y[].

SeqFloatEqual
Represents an invariant between a double scalar and a a sequence of double values.
Prints as x[] elements y where x is a double sequence and y is a double scalar.

SeqFloatGreaterEqual
Represents an invariant between a double scalar and a a sequence of double values.
Prints as x[] elements >= y where x is a double sequence and y is a double scalar.

SeqFloatGreaterThan
Represents an invariant between a double scalar and a a sequence of double values.
Prints as x[] elements > y where x is a double sequence and y is a double scalar.

SeqFloatLessEqual
Represents an invariant between a double scalar and a a sequence of double values.
Prints as x[] elements <= y where x is a double sequence and y is a double scalar.

SeqFloatLessThan
Represents an invariant between a double scalar and a a sequence of double values.
Prints as x[] elements < y where x is a double sequence and y is a double scalar.
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SeqIndexFloatEqual
Represents an invariant over sequences of double values between the index of an
element of the sequence and the element itself. Prints as x[i] == i.

This invariant is not enabled by default. See the configuration option
‘daikon.inv.unary.sequence.SeqIndexFloatEqual.enabled’.

SeqIndexFloatGreaterEqual
Represents an invariant over sequences of double values between the index of an
element of the sequence and the element itself. Prints as x[i] >= i.

This invariant is not enabled by default. See the configuration option
‘daikon.inv.unary.sequence.SeqIndexFloatGreaterEqual.enabled’.

SeqIndexFloatGreaterThan
Represents an invariant over sequences of double values between the index of an
element of the sequence and the element itself. Prints as x[i] > i.

This invariant is not enabled by default. See the configuration option
‘daikon.inv.unary.sequence.SeqIndexFloatGreaterThan.enabled’.

SeqIndexFloatLessEqual
Represents an invariant over sequences of double values between the index of an
element of the sequence and the element itself. Prints as x[i] <= i.

This invariant is not enabled by default. See the configuration option
‘daikon.inv.unary.sequence.SeqIndexFloatLessEqual.enabled’.

SeqIndexFloatLessThan
Represents an invariant over sequences of double values between the index of an
element of the sequence and the element itself. Prints as x[i] < i.

This invariant is not enabled by default. See the configuration option
‘daikon.inv.unary.sequence.SeqIndexFloatLessThan.enabled’.

SeqIndexFloatNonEqual
Represents an invariant over sequences of double values between the index of an
element of the sequence and the element itself. Prints as x[i] != i.

This invariant is not enabled by default. See the configuration option
‘daikon.inv.unary.sequence.SeqIndexFloatNonEqual.enabled’.

SeqIndexIntEqual
Represents an invariant over sequences of long values between the index of an element
of the sequence and the element itself. Prints as x[i] == i.

This invariant is not enabled by default. See the configuration option
‘daikon.inv.unary.sequence.SeqIndexIntEqual.enabled’.

SeqIndexIntGreaterEqual
Represents an invariant over sequences of long values between the index of an element
of the sequence and the element itself. Prints as x[i] >= i.

This invariant is not enabled by default. See the configuration option
‘daikon.inv.unary.sequence.SeqIndexIntGreaterEqual.enabled’.
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SeqIndexIntGreaterThan
Represents an invariant over sequences of long values between the index of an element
of the sequence and the element itself. Prints as x[i] > i.

This invariant is not enabled by default. See the configuration option
‘daikon.inv.unary.sequence.SeqIndexIntGreaterThan.enabled’.

SeqIndexIntLessEqual
Represents an invariant over sequences of long values between the index of an element
of the sequence and the element itself. Prints as x[i] <= i.

This invariant is not enabled by default. See the configuration option
‘daikon.inv.unary.sequence.SeqIndexIntLessEqual.enabled’.

SeqIndexIntLessThan
Represents an invariant over sequences of long values between the index of an element
of the sequence and the element itself. Prints as x[i] < i.

This invariant is not enabled by default. See the configuration option
‘daikon.inv.unary.sequence.SeqIndexIntLessThan.enabled’.

SeqIndexIntNonEqual
Represents an invariant over sequences of long values between the index of an element
of the sequence and the element itself. Prints as x[i] != i.

This invariant is not enabled by default. See the configuration option
‘daikon.inv.unary.sequence.SeqIndexIntNonEqual.enabled’.

SeqIntEqual
Represents an invariant between a long scalar and a a sequence of long values. Prints
as x[] elements == y where x is a long sequence and y is a long scalar.

SeqIntGreaterEqual
Represents an invariant between a long scalar and a a sequence of long values. Prints
as x[] elements >= y where x is a long sequence and y is a long scalar.

SeqIntGreaterThan
Represents an invariant between a long scalar and a a sequence of long values. Prints
as x[] elements > y where x is a long sequence and y is a long scalar.

SeqIntLessEqual
Represents an invariant between a long scalar and a a sequence of long values. Prints
as x[] elements <= y where x is a long sequence and y is a long scalar.

SeqIntLessThan
Represents an invariant between a long scalar and a a sequence of long values. Prints
as x[] elements < y where x is a long sequence and y is a long scalar.

SeqSeqFloatEqual
Represents invariants between two sequences of double values. If order matters for
each variable (which it does by default), then the sequences are compared lexically.
Prints as x[] == y[] lexically.

If order doesn’t matter for each variable, then the sequences are compared to see if
they are set equivalent. Prints as x[] == y[].
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If the auxiliary information (e.g., order matters) doesn’t match between two variables,
then this invariant cannot apply to those variables.

SeqSeqFloatGreaterEqual
Represents invariants between two sequences of double values. If order matters for
each variable (which it does by default), then the sequences are compared lexically.
Prints as x[] >= y[] lexically.

If the auxiliary information (e.g., order matters) doesn’t match between two variables,
then this invariant cannot apply to those variables.

SeqSeqFloatGreaterThan
Represents invariants between two sequences of double values. If order matters for
each variable (which it does by default), then the sequences are compared lexically.
Prints as x[] > y[] lexically.

If the auxiliary information (e.g., order matters) doesn’t match between two variables,
then this invariant cannot apply to those variables.

SeqSeqFloatLessEqual
Represents invariants between two sequences of double values. If order matters for
each variable (which it does by default), then the sequences are compared lexically.
Prints as x[] <= y[] lexically.

If the auxiliary information (e.g., order matters) doesn’t match between two variables,
then this invariant cannot apply to those variables.

SeqSeqFloatLessThan
Represents invariants between two sequences of double values. If order matters for
each variable (which it does by default), then the sequences are compared lexically.
Prints as x[] < y[] lexically.

If the auxiliary information (e.g., order matters) doesn’t match between two variables,
then this invariant cannot apply to those variables.

SeqSeqIntEqual
Represents invariants between two sequences of long values. If order matters for each
variable (which it does by default), then the sequences are compared lexically. Prints
as x[] == y[] lexically.

If order doesn’t matter for each variable, then the sequences are compared to see if
they are set equivalent. Prints as x[] == y[].

If the auxiliary information (e.g., order matters) doesn’t match between two variables,
then this invariant cannot apply to those variables.

SeqSeqIntGreaterEqual
Represents invariants between two sequences of long values. If order matters for each
variable (which it does by default), then the sequences are compared lexically. Prints
as x[] >= y[] lexically.

If the auxiliary information (e.g., order matters) doesn’t match between two variables,
then this invariant cannot apply to those variables.
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SeqSeqIntGreaterThan
Represents invariants between two sequences of long values. If order matters for each
variable (which it does by default), then the sequences are compared lexically. Prints
as x[] > y[] lexically.

If the auxiliary information (e.g., order matters) doesn’t match between two variables,
then this invariant cannot apply to those variables.

SeqSeqIntLessEqual
Represents invariants between two sequences of long values. If order matters for each
variable (which it does by default), then the sequences are compared lexically. Prints
as x[] <= y[] lexically.

If the auxiliary information (e.g., order matters) doesn’t match between two variables,
then this invariant cannot apply to those variables.

SeqSeqIntLessThan
Represents invariants between two sequences of long values. If order matters for each
variable (which it does by default), then the sequences are compared lexically. Prints
as x[] < y[] lexically.

If the auxiliary information (e.g., order matters) doesn’t match between two variables,
then this invariant cannot apply to those variables.

SeqSeqStringEqual
Represents invariants between two sequences of String values. If order matters for
each variable (which it does by default), then the sequences are compared lexically.
Prints as x[] == y[] lexically.

If order doesn’t matter for each variable, then the sequences are compared to see if
they are set equivalent. Prints as x[] == y[].

If the auxiliary information (e.g., order matters) doesn’t match between two variables,
then this invariant cannot apply to those variables.

SeqSeqStringGreaterEqual
Represents invariants between two sequences of String values. If order matters for
each variable (which it does by default), then the sequences are compared lexically.
Prints as x[] >= y[] lexically.

If the auxiliary information (e.g., order matters) doesn’t match between two variables,
then this invariant cannot apply to those variables.

SeqSeqStringGreaterThan
Represents invariants between two sequences of String values. If order matters for
each variable (which it does by default), then the sequences are compared lexically.
Prints as x[] > y[] lexically.

If the auxiliary information (e.g., order matters) doesn’t match between two variables,
then this invariant cannot apply to those variables.

SeqSeqStringLessEqual
Represents invariants between two sequences of String values. If order matters for
each variable (which it does by default), then the sequences are compared lexically.
Prints as x[] <= y[] lexically.
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If the auxiliary information (e.g., order matters) doesn’t match between two variables,
then this invariant cannot apply to those variables.

SeqSeqStringLessThan
Represents invariants between two sequences of String values. If order matters for
each variable (which it does by default), then the sequences are compared lexically.
Prints as x[] < y[] lexically.

If the auxiliary information (e.g., order matters) doesn’t match between two variables,
then this invariant cannot apply to those variables.

StdString.SubString
Represents the substring invariant between two String scalars. Prints as x is a

substring of y.

This invariant is not enabled by default. See the configuration option
‘daikon.inv.binary.twoString.StdString.SubString.enabled’.

StringEqual
Represents an invariant of == between two String scalars. Prints as x == y.

StringGreaterEqual
Represents an invariant of >= between two String scalars. Prints as x >= y.

StringGreaterThan
Represents an invariant of > between two String scalars. Prints as x > y.

StringLessEqual
Represents an invariant of <= between two String scalars. Prints as x <= y.

StringLessThan
Represents an invariant of < between two String scalars. Prints as x < y.

StringNonEqual
Represents an invariant of != between two String scalars. Prints as x != y.

SubSequence
Represents two sequences of long values where one sequence is a subsequence of the
other. Prints as x[] is a subsequence of y[].

This invariant is not enabled by default. See the configuration option
‘daikon.inv.binary.twoSequence.SubSequence.enabled’.

SubSequenceFloat
Represents two sequences of double values where one sequence is a subsequence of
the other. Prints as x[] is a subsequence of y[].

This invariant is not enabled by default. See the configuration option
‘daikon.inv.binary.twoSequence.SubSequenceFloat.enabled’.

SubSet
Represents two sequences of long values where one of the sequences is a subset of the
other; that is each element of one sequence appears in the other. Prints as either x[]
is a subset of y[] or as x[] is a superset of y[].

This invariant is not enabled by default. See the configuration option
‘daikon.inv.binary.twoSequence.SubSet.enabled’.
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SubSetFloat
Represents two sequences of double values where one of the sequences is a subset of
the other; that is each element of one sequence appears in the other. Prints as either
x[] is a subset of y[] or as x[] is a superset of y[].

This invariant is not enabled by default. See the configuration option
‘daikon.inv.binary.twoSequence.SubSetFloat.enabled’.

SuperSequence
Represents two sequences of long values where one sequence is a subsequence of the
other. Prints as x[] is a subsequence of y[].

This invariant is not enabled by default. See the configuration option
‘daikon.inv.binary.twoSequence.SuperSequence.enabled’.

SuperSequenceFloat
Represents two sequences of double values where one sequence is a subsequence of
the other. Prints as x[] is a subsequence of y[].

This invariant is not enabled by default. See the configuration option
‘daikon.inv.binary.twoSequence.SuperSequenceFloat.enabled’.

SuperSet
Represents two sequences of long values where one of the sequences is a subset of the
other; that is each element of one sequence appears in the other. Prints as either x[]
is a subset of y[] or as x[] is a superset of y[].

This invariant is not enabled by default. See the configuration option
‘daikon.inv.binary.twoSequence.SuperSet.enabled’.

SuperSetFloat
Represents two sequences of double values where one of the sequences is a subset of
the other; that is each element of one sequence appears in the other. Prints as either
x[] is a subset of y[] or as x[] is a superset of y[].

This invariant is not enabled by default. See the configuration option
‘daikon.inv.binary.twoSequence.SuperSetFloat.enabled’.

UpperBound
Represents the invariant x <= c, where c is a constant and x is a long scalar.

See also the following configuration options:

• ‘daikon.inv.unary.scalar.UpperBound.minimal_interesting’

• ‘daikon.inv.unary.scalar.UpperBound.maximal_interesting’

UpperBoundFloat
Represents the invariant x <= c, where c is a constant and x is a double scalar.

See also the following configuration options:

• ‘daikon.inv.unary.scalar.UpperBoundFloat.minimal_interesting’

• ‘daikon.inv.unary.scalar.UpperBoundFloat.maximal_interesting’
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5.6 Invariant filters

Invariant filters are used to suppress the printing of invariants that are true, but not cons-
idered “interesting” — usually because the invariants are considered obvious or redundant
in a given context.

The following is a list of the invariant filters that Daikon supports. Each of these filters
has a corresponding configuration enable switch; by default, all filters are enabled. See
Section 6.1.1.1 [Options to enable/disable filters], page 55, for details.

• DerivedParameterFilter: suppress parameter-derived postcondition invariants

This filter suppresses invariants at procedure exit points that are uninteresting bec-
ause they refer to ‘pre-state’ variables derived from pass-by-value parameters. For
example, suppose that param is a parameter to a Java method. If param itself is mod-
ified, that change won’t be visible to a caller, so it’s uninteresting to print. If param
points to an object, and that object is changed, that is visible, but only if param hasn’t
changed; otherwise, the invariant would report a change in some object other than the
one that was passed in.

• ObviousFilter: suppress “obvious”, or redundant, invariants — that is, invariants that
are implied by some other invariant

This filter suppresses any invariant that is a logical consequence of other invariants
that are printed. This keeps the output from becoming cluttered with redundant facts.
Some examples are:

• If ‘size(args[])==0’ is shown, then ‘size(args[])-1==-1’ is obvious and will
not be displayed by default.

• If ‘this.topOfStack < size(this.theArray[])-1’ is shown, then ‘this.
topOfStack < size(this.theArray[])’ is obvious and will not be displayed by
default.

• OnlyConstantVariablesFilter: suppress invariants containing only constants

This filter suppresses comparison invariants in which all of the variables being compared
were observed to be constant. In the current version of Daikon, most such invariants are
not even created in the first place, because constants are detected on an early pass over
the data. However, Daikon will note that all of the invariants that had any particular
constant value were also equal to each other: such invariants will be suppressed by this
filter.

• ParentFilter: filter invariants that match a parent program point invariant

A controlled invariant is an invariant that is “controlled” — or implied — by a parent
program point in the dataflow hierarchy. For example, for Java instrumented code each
class is associated with an object program point, which contain invariants that are found
at the entry and exit of all public methods. So in addition to the usual program points
such as StackAr.StackAr(int):::ENTER and StackAr.isEmpty():::EXIT48, Daikon
outputs invariants for the artificial program point StackAr:::OBJECT. The invariants
for StackAr:::OBJECT control the invariants for StackAr.StackAr(int):::ENTER and
StackAr.isEmpty():::EXIT48, because the former imply the latter. Because of this
redundancy, controlled invariants are not displayed by default. Note that if for some

DRAFT 1 June 2016



Chapter 5: Daikon output 54

reason, the controlling invariant is not displayed (for example, because it’s unjustified),
then the controlled invariant will be displayed.

• SimplifyFilter: eliminate redundant invariants using Simplify

Daikon contains built-in test that remove most redundant (logically implied) invariants
from its output; see

Daikon can use the Simplify theorem-prover to eliminate even more implied invariants
than Daikon’s built-in tests are able to eliminate. Simplify must be installed in order
to take advantage of this filter (see Section 9.1.11.1 [Installing Simplify], page 155).

If you don’t also specify the --suppress_redundant command-line option (see
Section 4.2 [Options to control invariant detection], page 20) to enable Simplify
processing, this filter doesn’t do anything.

• UnjustifiedFilter: suppress unjustified invariants

For every invariant, Daikon estimates the probability of that invariant happening by
chance. If that probability is less than the limit, then the invariant is deemed to be an
actual invariant, not just a chance occurrence. Currently the limit is .01. So by default,
only invariants with probabilities of less than 1% are shown. See the --conf_limit

option (Section 4.2 [Options to control invariant detection], page 20).

• UnmodifiedVariableEqualityFilter: suppress invariants that merely indicate that a var-
iable was unmodified

This filter is only useful for ESC output.
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6 Enhancing Daikon output

6.1 Configuration options

Many aspects of Daikon’s behavior can be controlled by setting various configuration
parameters. These configuration parameters control which invariants are checked and rep-
orted, the statistical tests for invariants, which derived variables are created, and more.

There are two ways to set configuration options. You can specify a configuration sett-
ing directly on the command line, using the --config_option name=value option (which
you may repeat as many times as you want). Or, you can create a configuration file
and supplying it to Daikon on the command line using the --config filename option.
Daikon applies all the command-line arguments in order. You may wish to use the suppl-
ied example configuration file daikon/java/daikon/config/example-settings.txt as an
example when creating your own configuration files. (If you did not download Daikon’s
sources, you must extract the example from daikon.jar to read it.)

You can also control Daikon’s output via its command-line options (see Chapter 4 [Run-
ning Daikon], page 18) and via the command-line options to its front ends such as Chicory
(see Section 7.1.1 [Chicory options], page 92) or Kvasir (see Section 7.3.2 [Kvasir options],
page 106).

The configuration options are different from the debugging flags --debug and --dbg

category (see Section 4.5 [Daikon debugging options], page 22). The debugging flags
permit Daikon to produce debugging output, but they do not affect the invariants that
Daikon computes.

6.1.1 List of configuration options

This is a list of all Daikon configuration options. The configuration option name contains
the Java class in which it is defined. (In the Daikon source code, the configuration value is
stored in a variable whose name contains a dkconfig_ prefix, but that should be irrelevant
to users.) To learn more about a specific invariant or derived variable than appears in this
manual, see its source code.

6.1.1.1 Options to enable/disable filters

These configuration options enable or disable filters that suppress printing of certain
invariants. Invariants are filtered if they are found to be true but are considered uninter-
esting or redundant. See Section 5.6 [Invariant filters], page 53, for more information.

daikon.inv.filter.DerivedParameterFilter.enabled

Boolean. If true, DerivedParameterFilter is initially turned on. The default value is
‘true’.

daikon.inv.filter.ObviousFilter.enabled

Boolean. If true, ObviousFilter is initially turned on. The default value is ‘true’.

daikon.inv.filter.OnlyConstantVariablesFilter.enabled

Boolean. If true, OnlyConstantVariablesFilter is initially turned on. The default
value is ‘true’.
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daikon.inv.filter.ParentFilter.enabled

Boolean. If true, ParentFilter is initially turned on. The default value is ‘true’.

daikon.inv.filter.ReadonlyPrestateFilter.enabled

Boolean. If true, ReadonlyPrestateFilter is initially turned on. The default value is
‘true’.

daikon.inv.filter.SimplifyFilter.enabled

Boolean. If true, SimplifyFilter is initially turned on. The default value is ‘true’.

daikon.inv.filter.StringFilter.enabled

Boolean. If true, StringFilter is initially turned on. The default value is ‘false’.

daikon.inv.filter.UnjustifiedFilter.enabled

Boolean. If true, UnjustifiedFilter is initially turned on. The default value is ‘true’.

daikon.inv.filter.UnmodifiedVariableEqualityFilter.enabled

Boolean. If true, UnmodifiedVariableEqualityFilter is initially turned on. The default
value is ‘true’.

6.1.1.2 Options to enable/disable specific invariants

These options control whether Daikon looks for specific kinds of invariants. See Section 5.5
[Invariant list], page 30, for more information about the corresponding invariants.

daikon.inv.binary.sequenceScalar.Member.enabled

Boolean. True iff Member invariants should be considered. The default value is ‘true’.

daikon.inv.binary.sequenceScalar.MemberFloat.enabled

Boolean. True iff Member invariants should be considered. The default value is ‘true’.

daikon.inv.binary.sequenceScalar.SeqFloatEqual.enabled

Boolean. True iff SeqFloatEqual invariants should be considered. The default value
is ‘true’.

daikon.inv.binary.sequenceScalar.SeqFloatGreaterEqual.enabled

Boolean. True iff SeqFloatGreaterEqual invariants should be considered. The default
value is ‘true’.

daikon.inv.binary.sequenceScalar.SeqFloatGreaterThan.enabled

Boolean. True iff SeqFloatGreaterThan invariants should be considered. The default
value is ‘true’.

daikon.inv.binary.sequenceScalar.SeqFloatLessEqual.enabled

Boolean. True iff SeqFloatLessEqual invariants should be considered. The default
value is ‘true’.

daikon.inv.binary.sequenceScalar.SeqFloatLessThan.enabled

Boolean. True iff SeqFloatLessThan invariants should be considered. The default
value is ‘true’.

daikon.inv.binary.sequenceScalar.SeqIntEqual.enabled

Boolean. True iff SeqIntEqual invariants should be considered. The default value is
‘true’.
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daikon.inv.binary.sequenceScalar.SeqIntGreaterEqual.enabled

Boolean. True iff SeqIntGreaterEqual invariants should be considered. The default
value is ‘true’.

daikon.inv.binary.sequenceScalar.SeqIntGreaterThan.enabled

Boolean. True iff SeqIntGreaterThan invariants should be considered. The default
value is ‘true’.

daikon.inv.binary.sequenceScalar.SeqIntLessEqual.enabled

Boolean. True iff SeqIntLessEqual invariants should be considered. The default value
is ‘true’.

daikon.inv.binary.sequenceScalar.SeqIntLessThan.enabled

Boolean. True iff SeqIntLessThan invariants should be considered. The default value
is ‘true’.

daikon.inv.binary.sequenceString.MemberString.enabled

Boolean. True iff Member invariants should be considered. The default value is ‘true’.

daikon.inv.binary.twoScalar.FloatEqual.enabled

Boolean. True iff FloatEqual invariants should be considered. The default value is
‘true’.

daikon.inv.binary.twoScalar.FloatGreaterEqual.enabled

Boolean. True iff FloatGreaterEqual invariants should be considered. The default
value is ‘true’.

daikon.inv.binary.twoScalar.FloatGreaterThan.enabled

Boolean. True iff FloatGreaterThan invariants should be considered. The default
value is ‘true’.

daikon.inv.binary.twoScalar.FloatLessEqual.enabled

Boolean. True iff FloatLessEqual invariants should be considered. The default value
is ‘true’.

daikon.inv.binary.twoScalar.FloatLessThan.enabled

Boolean. True iff FloatLessThan invariants should be considered. The default value
is ‘true’.

daikon.inv.binary.twoScalar.FloatNonEqual.enabled

Boolean. True iff FloatNonEqual invariants should be considered. The default value
is ‘true’.

daikon.inv.binary.twoScalar.IntEqual.enabled

Boolean. True iff IntEqual invariants should be considered. The default value is
‘true’.

daikon.inv.binary.twoScalar.IntGreaterEqual.enabled

Boolean. True iff IntGreaterEqual invariants should be considered. The default value
is ‘true’.

daikon.inv.binary.twoScalar.IntGreaterThan.enabled

Boolean. True iff IntGreaterThan invariants should be considered. The default value
is ‘true’.
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daikon.inv.binary.twoScalar.IntLessEqual.enabled

Boolean. True iff IntLessEqual invariants should be considered. The default value is
‘true’.

daikon.inv.binary.twoScalar.IntLessThan.enabled

Boolean. True iff IntLessThan invariants should be considered. The default value is
‘true’.

daikon.inv.binary.twoScalar.IntNonEqual.enabled

Boolean. True iff IntNonEqual invariants should be considered. The default value is
‘true’.

daikon.inv.binary.twoScalar.LinearBinary.enabled

Boolean. True iff LinearBinary invariants should be considered. The default value is
‘true’.

daikon.inv.binary.twoScalar.LinearBinaryFloat.enabled

Boolean. True iff LinearBinary invariants should be considered. The default value is
‘true’.

daikon.inv.binary.twoScalar.NumericFloat.Divides.enabled

Boolean. True iff divides invariants should be considered. The default value is ‘true’.

daikon.inv.binary.twoScalar.NumericFloat.Square.enabled

Boolean. True iff square invariants should be considered. The default value is ‘true’.

daikon.inv.binary.twoScalar.NumericFloat.ZeroTrack.enabled

Boolean. True iff zero-track invariants should be considered. The default value is
‘false’.

daikon.inv.binary.twoScalar.NumericInt.BitwiseAndZero.enabled

Boolean. True iff BitwiseAndZero invariants should be considered. The default value
is ‘false’.

daikon.inv.binary.twoScalar.NumericInt.BitwiseComplement.enabled

Boolean. True iff bitwise complement invariants should be considered. The default
value is ‘false’.

daikon.inv.binary.twoScalar.NumericInt.BitwiseSubset.enabled

Boolean. True iff bitwise subset invariants should be considered. The default value
is ‘false’.

daikon.inv.binary.twoScalar.NumericInt.Divides.enabled

Boolean. True iff divides invariants should be considered. The default value is ‘true’.

daikon.inv.binary.twoScalar.NumericInt.ShiftZero.enabled

Boolean. True iff ShiftZero invariants should be considered. The default value is
‘false’.

daikon.inv.binary.twoScalar.NumericInt.Square.enabled

Boolean. True iff square invariants should be considered. The default value is ‘true’.

daikon.inv.binary.twoScalar.NumericInt.ZeroTrack.enabled

Boolean. True iff zero-track invariants should be considered. The default value is
‘false’.
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daikon.inv.binary.twoSequence.PairwiseFloatEqual.enabled

Boolean. True iff PairwiseIntComparison invariants should be considered. The default
value is ‘true’.

daikon.inv.binary.twoSequence.PairwiseFloatGreaterEqual.enabled

Boolean. True iff PairwiseIntComparison invariants should be considered. The default
value is ‘true’.

daikon.inv.binary.twoSequence.PairwiseFloatGreaterThan.enabled

Boolean. True iff PairwiseIntComparison invariants should be considered. The default
value is ‘true’.

daikon.inv.binary.twoSequence.PairwiseFloatLessEqual.enabled

Boolean. True iff PairwiseIntComparison invariants should be considered. The default
value is ‘true’.

daikon.inv.binary.twoSequence.PairwiseFloatLessThan.enabled

Boolean. True iff PairwiseIntComparison invariants should be considered. The default
value is ‘true’.

daikon.inv.binary.twoSequence.PairwiseIntEqual.enabled

Boolean. True iff PairwiseIntComparison invariants should be considered. The default
value is ‘true’.

daikon.inv.binary.twoSequence.PairwiseIntGreaterEqual.enabled

Boolean. True iff PairwiseIntComparison invariants should be considered. The default
value is ‘true’.

daikon.inv.binary.twoSequence.PairwiseIntGreaterThan.enabled

Boolean. True iff PairwiseIntComparison invariants should be considered. The default
value is ‘true’.

daikon.inv.binary.twoSequence.PairwiseIntLessEqual.enabled

Boolean. True iff PairwiseIntComparison invariants should be considered. The default
value is ‘true’.

daikon.inv.binary.twoSequence.PairwiseIntLessThan.enabled

Boolean. True iff PairwiseIntComparison invariants should be considered. The default
value is ‘true’.

daikon.inv.binary.twoSequence.PairwiseLinearBinary.enabled

Boolean. True iff PairwiseLinearBinary invariants should be considered. The default
value is ‘true’.

daikon.inv.binary.twoSequence.PairwiseLinearBinaryFloat.enabled

Boolean. True iff PairwiseLinearBinary invariants should be considered. The default
value is ‘true’.

daikon.inv.binary.twoSequence.PairwiseNumericFloat.Divides.enabled

Boolean. True iff divides invariants should be considered. The default value is ‘true’.

daikon.inv.binary.twoSequence.PairwiseNumericFloat.Square.enabled

Boolean. True iff square invariants should be considered. The default value is ‘true’.
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daikon.inv.binary.twoSequence.PairwiseNumericFloat.ZeroTrack.enabled

Boolean. True iff zero-track invariants should be considered. The default value is
‘false’.

daikon.inv.binary.twoSequence.PairwiseNumericInt.BitwiseAndZero.enabled

Boolean. True iff BitwiseAndZero invariants should be considered. The default value
is ‘false’.

daikon.inv.binary.twoSequence.PairwiseNumericInt.BitwiseComplement.enabled

Boolean. True iff bitwise complement invariants should be considered. The default
value is ‘false’.

daikon.inv.binary.twoSequence.PairwiseNumericInt.BitwiseSubset.enabled

Boolean. True iff bitwise subset invariants should be considered. The default value
is ‘false’.

daikon.inv.binary.twoSequence.PairwiseNumericInt.Divides.enabled

Boolean. True iff divides invariants should be considered. The default value is ‘true’.

daikon.inv.binary.twoSequence.PairwiseNumericInt.ShiftZero.enabled

Boolean. True iff ShiftZero invariants should be considered. The default value is
‘false’.

daikon.inv.binary.twoSequence.PairwiseNumericInt.Square.enabled

Boolean. True iff square invariants should be considered. The default value is ‘true’.

daikon.inv.binary.twoSequence.PairwiseNumericInt.ZeroTrack.enabled

Boolean. True iff zero-track invariants should be considered. The default value is
‘false’.

daikon.inv.binary.twoSequence.PairwiseString.SubString.enabled

Boolean. True iff SubString invariants should be considered. The default value is
‘false’.

daikon.inv.binary.twoSequence.PairwiseStringEqual.enabled

Boolean. True iff PairwiseIntComparison invariants should be considered. The default
value is ‘true’.

daikon.inv.binary.twoSequence.PairwiseStringGreaterEqual.enabled

Boolean. True iff PairwiseIntComparison invariants should be considered. The default
value is ‘true’.

daikon.inv.binary.twoSequence.PairwiseStringGreaterThan.enabled

Boolean. True iff PairwiseIntComparison invariants should be considered. The default
value is ‘true’.

daikon.inv.binary.twoSequence.PairwiseStringLessEqual.enabled

Boolean. True iff PairwiseIntComparison invariants should be considered. The default
value is ‘true’.

daikon.inv.binary.twoSequence.PairwiseStringLessThan.enabled

Boolean. True iff PairwiseIntComparison invariants should be considered. The default
value is ‘true’.
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daikon.inv.binary.twoSequence.Reverse.enabled

Boolean. True iff Reverse invariants should be considered. The default value is ‘true’.

daikon.inv.binary.twoSequence.ReverseFloat.enabled

Boolean. True iff Reverse invariants should be considered. The default value is ‘true’.

daikon.inv.binary.twoSequence.SeqSeqFloatEqual.enabled

Boolean. True iff SeqSeqFloatEqual invariants should be considered. The default
value is ‘true’.

daikon.inv.binary.twoSequence.SeqSeqFloatGreaterEqual.enabled

Boolean. True iff SeqSeqFloatGreaterEqual invariants should be considered. The
default value is ‘true’.

daikon.inv.binary.twoSequence.SeqSeqFloatGreaterThan.enabled

Boolean. True iff SeqSeqFloatGreaterThan invariants should be considered. The
default value is ‘true’.

daikon.inv.binary.twoSequence.SeqSeqFloatLessEqual.enabled

Boolean. True iff SeqSeqFloatLessEqual invariants should be considered. The default
value is ‘true’.

daikon.inv.binary.twoSequence.SeqSeqFloatLessThan.enabled

Boolean. True iff SeqSeqFloatLessThan invariants should be considered. The default
value is ‘true’.

daikon.inv.binary.twoSequence.SeqSeqIntEqual.enabled

Boolean. True iff SeqSeqIntEqual invariants should be considered. The default value
is ‘true’.

daikon.inv.binary.twoSequence.SeqSeqIntGreaterEqual.enabled

Boolean. True iff SeqSeqIntGreaterEqual invariants should be considered. The def-
ault value is ‘true’.

daikon.inv.binary.twoSequence.SeqSeqIntGreaterThan.enabled

Boolean. True iff SeqSeqIntGreaterThan invariants should be considered. The default
value is ‘true’.

daikon.inv.binary.twoSequence.SeqSeqIntLessEqual.enabled

Boolean. True iff SeqSeqIntLessEqual invariants should be considered. The default
value is ‘true’.

daikon.inv.binary.twoSequence.SeqSeqIntLessThan.enabled

Boolean. True iff SeqSeqIntLessThan invariants should be considered. The default
value is ‘true’.

daikon.inv.binary.twoSequence.SeqSeqStringEqual.enabled

Boolean. True iff SeqSeqStringEqual invariants should be considered. The default
value is ‘true’.

daikon.inv.binary.twoSequence.SeqSeqStringGreaterEqual.enabled

Boolean. True iff SeqSeqStringGreaterEqual invariants should be considered. The
default value is ‘true’.
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daikon.inv.binary.twoSequence.SeqSeqStringGreaterThan.enabled

Boolean. True iff SeqSeqStringGreaterThan invariants should be considered. The
default value is ‘true’.

daikon.inv.binary.twoSequence.SeqSeqStringLessEqual.enabled

Boolean. True iff SeqSeqStringLessEqual invariants should be considered. The default
value is ‘true’.

daikon.inv.binary.twoSequence.SeqSeqStringLessThan.enabled

Boolean. True iff SeqSeqStringLessThan invariants should be considered. The default
value is ‘true’.

daikon.inv.binary.twoSequence.SubSequence.enabled

Boolean. True iff SubSequence invariants should be considered. The default value is
‘false’.

daikon.inv.binary.twoSequence.SubSequenceFloat.enabled

Boolean. True iff SubSequence invariants should be considered. The default value is
‘false’.

daikon.inv.binary.twoSequence.SubSet.enabled

Boolean. True iff SubSet invariants should be considered. The default value is ‘false’.

daikon.inv.binary.twoSequence.SubSetFloat.enabled

Boolean. True iff SubSet invariants should be considered. The default value is ‘false’.

daikon.inv.binary.twoSequence.SuperSequence.enabled

Boolean. True iff SubSequence invariants should be considered. The default value is
‘false’.

daikon.inv.binary.twoSequence.SuperSequenceFloat.enabled

Boolean. True iff SubSequence invariants should be considered. The default value is
‘false’.

daikon.inv.binary.twoSequence.SuperSet.enabled

Boolean. True iff SubSet invariants should be considered. The default value is ‘false’.

daikon.inv.binary.twoSequence.SuperSetFloat.enabled

Boolean. True iff SubSet invariants should be considered. The default value is ‘false’.

daikon.inv.binary.twoString.StdString.SubString.enabled

Boolean. True iff SubString invariants should be considered. The default value is
‘false’.

daikon.inv.binary.twoString.StringEqual.enabled

Boolean. True iff StringEqual invariants should be considered. The default value is
‘true’.

daikon.inv.binary.twoString.StringGreaterEqual.enabled

Boolean. True iff StringGreaterEqual invariants should be considered. The default
value is ‘true’.

daikon.inv.binary.twoString.StringGreaterThan.enabled

Boolean. True iff StringGreaterThan invariants should be considered. The default
value is ‘true’.
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daikon.inv.binary.twoString.StringLessEqual.enabled

Boolean. True iff StringLessEqual invariants should be considered. The default value
is ‘true’.

daikon.inv.binary.twoString.StringLessThan.enabled

Boolean. True iff StringLessThan invariants should be considered. The default value
is ‘true’.

daikon.inv.binary.twoString.StringNonEqual.enabled

Boolean. True iff StringNonEqual invariants should be considered. The default value
is ‘true’.

daikon.inv.ternary.threeScalar.FunctionBinary.enabled

Boolean. True if FunctionBinary invariants should be considered. The default value
is ‘false’.

daikon.inv.ternary.threeScalar.FunctionBinaryFloat.enabled

Boolean. True if FunctionBinaryFloat invariants should be considered. The default
value is ‘false’.

daikon.inv.ternary.threeScalar.LinearTernary.enabled

Boolean. True iff LinearTernary invariants should be considered. The default value
is ‘true’.

daikon.inv.ternary.threeScalar.LinearTernaryFloat.enabled

Boolean. True iff LinearTernary invariants should be considered. The default value
is ‘true’.

daikon.inv.unary.scalar.CompleteOneOfScalar.enabled

Boolean. True iff CompleteOneOfScalar invariants should be considered. The default
value is ‘false’.

daikon.inv.unary.scalar.IsPointer.enabled

Boolean. True iff IsPointer invariants should be considered. The default value is
‘false’.

daikon.inv.unary.scalar.LowerBound.enabled

Boolean. True iff LowerBound invariants should be considered. The default value is
‘true’.

daikon.inv.unary.scalar.LowerBoundFloat.enabled

Boolean. True iff LowerBoundFloat invariants should be considered. The default
value is ‘true’.

daikon.inv.unary.scalar.Modulus.enabled

Boolean. True iff Modulus invariants should be considered. The default value is
‘false’.

daikon.inv.unary.scalar.NonModulus.enabled

Boolean. True iff NonModulus invariants should be considered. The default value is
‘false’.

daikon.inv.unary.scalar.NonZero.enabled

Boolean. True iff NonZero invariants should be considered. The default value is ‘true’.
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daikon.inv.unary.scalar.NonZeroFloat.enabled

Boolean. True iff NonZeroFloat invariants should be considered. The default value
is ‘true’.

daikon.inv.unary.scalar.OneOfFloat.enabled

Boolean. True iff OneOf invariants should be considered. The default value is ‘true’.

daikon.inv.unary.scalar.OneOfScalar.enabled

Boolean. True iff OneOf invariants should be considered. The default value is ‘true’.

daikon.inv.unary.scalar.Positive.enabled

Boolean. True iff Positive invariants should be considered. The default value is ‘true’.

daikon.inv.unary.scalar.RangeInt.Even.enabled

Boolean. True if Even invariants should be considered. The default value is ‘false’.

daikon.inv.unary.scalar.RangeInt.PowerOfTwo.enabled

Boolean. True if PowerOfTwo invariants should be considered. The default value is
‘true’.

daikon.inv.unary.scalar.UpperBound.enabled

Boolean. True iff UpperBound invariants should be considered. The default value is
‘true’.

daikon.inv.unary.scalar.UpperBoundFloat.enabled

Boolean. True iff UpperBoundFloat invariants should be considered. The default
value is ‘true’.

daikon.inv.unary.sequence.CommonFloatSequence.enabled

Boolean. True iff CommonSequence invariants should be considered. The default
value is ‘false’.

daikon.inv.unary.sequence.CommonSequence.enabled

Boolean. True iff CommonSequence invariants should be considered. The default
value is ‘false’.

daikon.inv.unary.sequence.EltLowerBound.enabled

Boolean. True iff EltLowerBound invariants should be considered. The default value
is ‘true’.

daikon.inv.unary.sequence.EltLowerBoundFloat.enabled

Boolean. True iff EltLowerBoundFloat invariants should be considered. The default
value is ‘true’.

daikon.inv.unary.sequence.EltNonZero.enabled

Boolean. True iff EltNonZero invariants should be considered. The default value is
‘true’.

daikon.inv.unary.sequence.EltNonZeroFloat.enabled

Boolean. True iff EltNonZero invariants should be considered. The default value is
‘true’.

daikon.inv.unary.sequence.EltOneOf.enabled

Boolean. True iff OneOf invariants should be considered. The default value is ‘true’.
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daikon.inv.unary.sequence.EltOneOfFloat.enabled

Boolean. True iff OneOf invariants should be considered. The default value is ‘true’.

daikon.inv.unary.sequence.EltRangeInt.Even.enabled

Boolean. True if Even invariants should be considered. The default value is ‘false’.

daikon.inv.unary.sequence.EltRangeInt.PowerOfTwo.enabled

Boolean. True if PowerOfTwo invariants should be considered. The default value is
‘true’.

daikon.inv.unary.sequence.EltUpperBound.enabled

Boolean. True iff EltUpperBound invariants should be considered. The default value
is ‘true’.

daikon.inv.unary.sequence.EltUpperBoundFloat.enabled

Boolean. True iff EltUpperBoundFloat invariants should be considered. The default
value is ‘true’.

daikon.inv.unary.sequence.EltwiseFloatEqual.enabled

Boolean. True iff EltwiseIntComparison invariants should be considered. The default
value is ‘true’.

daikon.inv.unary.sequence.EltwiseFloatGreaterEqual.enabled

Boolean. True iff EltwiseIntComparison invariants should be considered. The default
value is ‘true’.

daikon.inv.unary.sequence.EltwiseFloatGreaterThan.enabled

Boolean. True iff EltwiseIntComparison invariants should be considered. The default
value is ‘true’.

daikon.inv.unary.sequence.EltwiseFloatLessEqual.enabled

Boolean. True iff EltwiseIntComparison invariants should be considered. The default
value is ‘true’.

daikon.inv.unary.sequence.EltwiseFloatLessThan.enabled

Boolean. True iff EltwiseIntComparison invariants should be considered. The default
value is ‘true’.

daikon.inv.unary.sequence.EltwiseIntEqual.enabled

Boolean. True iff EltwiseIntComparison invariants should be considered. The default
value is ‘true’.

daikon.inv.unary.sequence.EltwiseIntGreaterEqual.enabled

Boolean. True iff EltwiseIntComparison invariants should be considered. The default
value is ‘true’.

daikon.inv.unary.sequence.EltwiseIntGreaterThan.enabled

Boolean. True iff EltwiseIntComparison invariants should be considered. The default
value is ‘true’.

daikon.inv.unary.sequence.EltwiseIntLessEqual.enabled

Boolean. True iff EltwiseIntComparison invariants should be considered. The default
value is ‘true’.

DRAFT 1 June 2016



Chapter 6: Enhancing Daikon output 66

daikon.inv.unary.sequence.EltwiseIntLessThan.enabled

Boolean. True iff EltwiseIntComparison invariants should be considered. The default
value is ‘true’.

daikon.inv.unary.sequence.NoDuplicates.enabled

Boolean. True iff NoDuplicates invariants should be considered. The default value is
‘false’.

daikon.inv.unary.sequence.NoDuplicatesFloat.enabled

Boolean. True iff NoDuplicates invariants should be considered. The default value is
‘false’.

daikon.inv.unary.sequence.OneOfFloatSequence.enabled

Boolean. True iff OneOf invariants should be considered. The default value is ‘true’.

daikon.inv.unary.sequence.OneOfSequence.enabled

Boolean. True iff OneOf invariants should be considered. The default value is ‘true’.

daikon.inv.unary.sequence.SeqIndexFloatEqual.enabled

Boolean. True iff SeqIndexFloatEqual invariants should be considered. The default
value is ‘false’.

daikon.inv.unary.sequence.SeqIndexFloatGreaterEqual.enabled

Boolean. True iff SeqIndexFloatGreaterEqual invariants should be considered. The
default value is ‘false’.

daikon.inv.unary.sequence.SeqIndexFloatGreaterThan.enabled

Boolean. True iff SeqIndexFloatGreaterThan invariants should be considered. The
default value is ‘false’.

daikon.inv.unary.sequence.SeqIndexFloatLessEqual.enabled

Boolean. True iff SeqIndexFloatLessEqual invariants should be considered. The def-
ault value is ‘false’.

daikon.inv.unary.sequence.SeqIndexFloatLessThan.enabled

Boolean. True iff SeqIndexFloatLessThan invariants should be considered. The def-
ault value is ‘false’.

daikon.inv.unary.sequence.SeqIndexFloatNonEqual.enabled

Boolean. True iff SeqIndexFloatNonEqual invariants should be considered. The def-
ault value is ‘false’.

daikon.inv.unary.sequence.SeqIndexIntEqual.enabled

Boolean. True iff SeqIndexIntEqual invariants should be considered. The default
value is ‘false’.

daikon.inv.unary.sequence.SeqIndexIntGreaterEqual.enabled

Boolean. True iff SeqIndexIntGreaterEqual invariants should be considered. The
default value is ‘false’.

daikon.inv.unary.sequence.SeqIndexIntGreaterThan.enabled

Boolean. True iff SeqIndexIntGreaterThan invariants should be considered. The
default value is ‘false’.
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daikon.inv.unary.sequence.SeqIndexIntLessEqual.enabled

Boolean. True iff SeqIndexIntLessEqual invariants should be considered. The default
value is ‘false’.

daikon.inv.unary.sequence.SeqIndexIntLessThan.enabled

Boolean. True iff SeqIndexIntLessThan invariants should be considered. The default
value is ‘false’.

daikon.inv.unary.sequence.SeqIndexIntNonEqual.enabled

Boolean. True iff SeqIndexIntNonEqual invariants should be considered. The default
value is ‘false’.

daikon.inv.unary.string.CompleteOneOfString.enabled

Boolean. True iff PrintableString invariants should be considered. The default value
is ‘false’.

daikon.inv.unary.string.OneOfString.enabled

Boolean. True iff OneOf invariants should be considered. The default value is ‘true’.

daikon.inv.unary.string.PrintableString.enabled

Boolean. True iff PrintableString invariants should be considered. The default value
is ‘false’.

daikon.inv.unary.stringsequence.CommonStringSequence.enabled

Boolean. True iff CommonStringSequence invariants should be considered. The def-
ault value is ‘false’.

daikon.inv.unary.stringsequence.EltOneOfString.enabled

Boolean. True iff OneOf invariants should be considered. The default value is ‘true’.

daikon.inv.unary.stringsequence.OneOfStringSequence.enabled

Boolean. True iff OneOf invariants should be considered. The default value is ‘true’.

6.1.1.3 Other invariant configuration parameters

The configuration options listed in this section parameterize the behavior of certain invar-
iants. See Section 5.5 [Invariant list], page 30, for more information about the invariants.

daikon.inv.Invariant.confidence_limit

Floating-point number between 0 and 1. Invariants are displayed only if the confidence
that the invariant did not occur by chance is greater than this. (May also be set via
the --conf_limit switch to Daikon; refer to manual.) The default value is ‘0.99’.

daikon.inv.Invariant.fuzzy_ratio

Floating-point number between 0 and 0.1, representing the maximum relative differ-
ence between two floats for fuzzy comparisons. Larger values will result in floats that
are relatively farther apart being treated as equal. A value of 0 essentially disables
fuzzy comparisons. Specifically, if abs (1 - f1/f2) is less than or equal to this value,
then the two doubles (f1 and f2) will be treated as equal by Daikon. The default
value is ‘1.0E-4’.

daikon.inv.Invariant.simplify_define_predicates

A boolean value. If true, Daikon’s Simplify output (printed when the --format

simplify flag is enabled, and used internally by --suppress_redundant) will in-
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clude new predicates representing some complex relationships in invariants, such as
lexical ordering among sequences. If false, some complex relationships will appear
in the output as complex quantified formulas, while others will not appear at all.
When enabled, Simplify may be able to make more inferences, allowing --suppress_

redundant to suppress more redundant invariants, but Simplify may also run more
slowly. The default value is ‘false’.

daikon.inv.binary.twoScalar.IntNonEqual.integral_only

Boolean. True iff IntNonEqual invariants should be considered. The default value is
‘true’.

daikon.inv.filter.DerivedVariableFilter.class_re

Regular expression to match against the class name of derived variables. Invariants
that contain derived variables that match will be filtered out. If null, nothing will be
filtered out. The default value is ‘null’.

daikon.inv.unary.scalar.LowerBound.maximal_interesting

Long integer. Together with the corresponding minimal_interesting parameter,
specifies the range of the computed constant that is “interesting” — the range that
should be reported. For instance, setting minimal_interesting to -1 and maximal_

interesting to 2 would only permit output of LowerBound invariants whose cutoff
was one of (-1,0,1,2). The default value is ‘2’.

daikon.inv.unary.scalar.LowerBound.minimal_interesting

Long integer. Together with the corresponding maximal_interesting parameter,
specifies the range of the computed constant that is “interesting” — the range that
should be reported. For instance, setting minimal_interesting to -1 and maximal_

interesting to 2 would only permit output of LowerBound invariants whose cutoff
was one of (-1,0,1,2). The default value is ‘-1’.

daikon.inv.unary.scalar.LowerBoundFloat.maximal_interesting

Long integer. Together with the corresponding minimal_interesting parameter,
specifies the range of the computed constant that is “interesting” — the range that
should be reported. For instance, setting minimal_interesting to -1 and maximal_

interesting to 2 would only permit output of LowerBoundFloat invariants whose
cutoff was one of (-1,0,1,2). The default value is ‘2’.

daikon.inv.unary.scalar.LowerBoundFloat.minimal_interesting

Long integer. Together with the corresponding maximal_interesting parameter,
specifies the range of the computed constant that is “interesting” — the range that
should be reported. For instance, setting minimal_interesting to -1 and maximal_

interesting to 2 would only permit output of LowerBoundFloat invariants whose
cutoff was one of (-1,0,1,2). The default value is ‘-1’.

daikon.inv.unary.scalar.OneOfFloat.size

Positive integer. Specifies the maximum set size for this type of invariant (x is one of
size items). The default value is ‘3’.

daikon.inv.unary.scalar.OneOfScalar.omit_hashcode_values_Simplify

Boolean. If true, invariants describing hashcode-typed variables as having any parti-
cular value will have an artificial value substituted for the exact hashhode values. The

DRAFT 1 June 2016



Chapter 6: Enhancing Daikon output 69

artificial values will stay the same from run to run even if the actual hashcode values
change (as long as the OneOf invariants remain the same). If false, hashcodes will
be formatted as the application of a hashcode uninterpreted function to an integer
representing the bit pattern of the hashcode. One might wish to omit the exact values
of the hashcodes because they are usually uninteresting; this is the same reason they
print in the native Daikon format, for instance, as var has only one value rather
than var == 150924732. The default value is ‘false’.

daikon.inv.unary.scalar.OneOfScalar.size

Positive integer. Specifies the maximum set size for this type of invariant (x is one of
size items). The default value is ‘3’.

daikon.inv.unary.scalar.UpperBound.maximal_interesting

Long integer. Together with the corresponding minimal_interesting parameter,
specifies the range of the computed constant that is “interesting” — the range that
should be reported. For instance, setting minimal_interesting to -1 and maximal_

interesting to 2 would only permit output of UpperBound invariants whose cutoff
was one of (-1,0,1,2). The default value is ‘2’.

daikon.inv.unary.scalar.UpperBound.minimal_interesting

Long integer. Together with the corresponding maximal_interesting parameter,
specifies the range of the computed constant that is “interesting” — the range that
should be reported. For instance, setting minimal_interesting to -1 and maximal_

interesting to 2 would only permit output of UpperBound invariants whose cutoff
was one of (-1,0,1,2). The default value is ‘-1’.

daikon.inv.unary.scalar.UpperBoundFloat.maximal_interesting

Long integer. Together with the corresponding minimal_interesting parameter,
specifies the range of the computed constant that is “interesting” — the range that
should be reported. For instance, setting minimal_interesting to -1 and maximal_

interesting to 2 would only permit output of UpperBoundFloat invariants whose
cutoff was one of (-1,0,1,2). The default value is ‘2’.

daikon.inv.unary.scalar.UpperBoundFloat.minimal_interesting

Long integer. Together with the corresponding maximal_interesting parameter,
specifies the range of the computed constant that is “interesting” — the range that
should be reported. For instance, setting minimal_interesting to -1 and maximal_

interesting to 2 would only permit output of UpperBoundFloat invariants whose
cutoff was one of (-1,0,1,2). The default value is ‘-1’.

daikon.inv.unary.sequence.CommonFloatSequence.hashcode_seqs

Boolean. Set to true to consider common sequences over hashcodes (pointers). The
default value is ‘false’.

daikon.inv.unary.sequence.CommonSequence.hashcode_seqs

Boolean. Set to true to consider common sequences over hashcodes (pointers). The
default value is ‘false’.

daikon.inv.unary.sequence.EltLowerBound.maximal_interesting

Long integer. Together with the corresponding minimal_interesting parameter,
specifies the range of the computed constant that is “interesting” — the range that
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should be reported. For instance, setting minimal_interesting to -1 and maximal_

interesting to 2 would only permit output of EltLowerBound invariants whose cutoff
was one of (-1,0,1,2). The default value is ‘2’.

daikon.inv.unary.sequence.EltLowerBound.minimal_interesting

Long integer. Together with the corresponding maximal_interesting parameter,
specifies the range of the computed constant that is “interesting” — the range that
should be reported. For instance, setting minimal_interesting to -1 and maximal_

interesting to 2 would only permit output of EltLowerBound invariants whose cutoff
was one of (-1,0,1,2). The default value is ‘-1’.

daikon.inv.unary.sequence.EltLowerBoundFloat.maximal_interesting

Long integer. Together with the corresponding minimal_interesting parameter,
specifies the range of the computed constant that is “interesting” — the range that
should be reported. For instance, setting minimal_interesting to -1 and maximal_

interesting to 2 would only permit output of EltLowerBoundFloat invariants whose
cutoff was one of (-1,0,1,2). The default value is ‘2’.

daikon.inv.unary.sequence.EltLowerBoundFloat.minimal_interesting

Long integer. Together with the corresponding maximal_interesting parameter,
specifies the range of the computed constant that is “interesting” — the range that
should be reported. For instance, setting minimal_interesting to -1 and maximal_

interesting to 2 would only permit output of EltLowerBoundFloat invariants whose
cutoff was one of (-1,0,1,2). The default value is ‘-1’.

daikon.inv.unary.sequence.EltOneOf.omit_hashcode_values_Simplify

Boolean. If true, invariants describing hashcode-typed variables as having any parti-
cular value will have an artificial value substituted for the exact hashhode values. The
artificial values will stay the same from run to run even if the actual hashcode values
change (as long as the OneOf invariants remain the same). If false, hashcodes will
be formatted as the application of a hashcode uninterpreted function to an integer
representing the bit pattern of the hashcode. One might wish to omit the exact values
of the hashcodes because they are usually uninteresting; this is the same reason they
print in the native Daikon format, for instance, as var has only one value rather
than var == 150924732. The default value is ‘false’.

daikon.inv.unary.sequence.EltOneOf.size

Positive integer. Specifies the maximum set size for this type of invariant (x is one of
size items). The default value is ‘3’.

daikon.inv.unary.sequence.EltOneOfFloat.size

Positive integer. Specifies the maximum set size for this type of invariant (x is one of
size items). The default value is ‘3’.

daikon.inv.unary.sequence.EltUpperBound.maximal_interesting

Long integer. Together with the corresponding minimal_interesting parameter,
specifies the range of the computed constant that is “interesting” — the range that
should be reported. For instance, setting minimal_interesting to -1 and maximal_

interesting to 2 would only permit output of EltUpperBound invariants whose
cutoff was one of (-1,0,1,2). The default value is ‘2’.
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daikon.inv.unary.sequence.EltUpperBound.minimal_interesting

Long integer. Together with the corresponding maximal_interesting parameter,
specifies the range of the computed constant that is “interesting” — the range that
should be reported. For instance, setting minimal_interesting to -1 and maximal_

interesting to 2 would only permit output of EltUpperBound invariants whose
cutoff was one of (-1,0,1,2). The default value is ‘-1’.

daikon.inv.unary.sequence.EltUpperBoundFloat.maximal_interesting

Long integer. Together with the corresponding minimal_interesting parameter,
specifies the range of the computed constant that is “interesting” — the range that
should be reported. For instance, setting minimal_interesting to -1 and maximal_

interesting to 2 would only permit output of EltUpperBoundFloat invariants whose
cutoff was one of (-1,0,1,2). The default value is ‘2’.

daikon.inv.unary.sequence.EltUpperBoundFloat.minimal_interesting

Long integer. Together with the corresponding maximal_interesting parameter,
specifies the range of the computed constant that is “interesting” — the range that
should be reported. For instance, setting minimal_interesting to -1 and maximal_

interesting to 2 would only permit output of EltUpperBoundFloat invariants whose
cutoff was one of (-1,0,1,2). The default value is ‘-1’.

daikon.inv.unary.sequence.OneOfFloatSequence.size

Positive integer. Specifies the maximum set size for this type of invariant (x is one of
size items). The default value is ‘3’.

daikon.inv.unary.sequence.OneOfSequence.omit_hashcode_values_Simplify

Boolean. If true, invariants describing hashcode-typed variables as having any parti-
cular value will have an artificial value substituted for the exact hashhode values. The
artificial values will stay the same from run to run even if the actual hashcode values
change (as long as the OneOf invariants remain the same). If false, hashcodes will
be formatted as the application of a hashcode uninterpreted function to an integer
representing the bit pattern of the hashcode. One might wish to omit the exact values
of the hashcodes because they are usually uninteresting; this is the same reason they
print in the native Daikon format, for instance, as var has only one value rather
than var == 150924732. The default value is ‘false’.

daikon.inv.unary.sequence.OneOfSequence.size

Positive integer. Specifies the maximum set size for this type of invariant (x is one of
size items). The default value is ‘3’.

daikon.inv.unary.sequence.SingleSequence.SeqIndexDisableAll

Boolean. Set to true to disable all SeqIndex invariants (SeqIndexIntEqual, SeqIn-
dexFloatLessThan, etc). This overrides the settings of the individual SeqIndex enable
configuration options. To disable only some options, the options must be disabled
individually. The default value is ‘false’.

daikon.inv.unary.string.OneOfString.size

Positive integer. Specifies the maximum set size for this type of invariant (x is one of
size items). The default value is ‘3’.
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daikon.inv.unary.stringsequence.EltOneOfString.size

Positive integer. Specifies the maximum set size for this type of invariant (x is one of
size items). The default value is ‘3’.

daikon.inv.unary.stringsequence.OneOfStringSequence.size

Positive integer. Specifies the maximum set size for this type of invariant (x is one of
size items). The default value is ‘2’.

6.1.1.4 Options to enable/disable derived variables

These options control whether Daikon looks for invariants involving certain forms of
derived variables. Also see Section 5.3 [Variable names], page 26.

daikon.derive.Derivation.disable_derived_variables

Boolean. If true, Daikon will not create any derived variables. Derived variables,
which are combinations of variables that appeared in the program, like array[index]
if array and index appeared, can increase the number of properties Daikon finds, esp-
ecially over sequences. However, derived variables increase Daikon’s time and memory
usage, sometimes dramatically. If false, individual kinds of derived variables can be
enabled or disabled individually using configuration options under daikon.derive.
The default value is ‘false’.

daikon.derive.binary.SequenceFloatIntersection.enabled

Boolean. True iff SequenceFloatIntersection derived variables should be generated.
The default value is ‘false’.

daikon.derive.binary.SequenceFloatSubscript.enabled

Boolean. True iff SequenceFloatSubscript derived variables should be generated. The
default value is ‘true’.

daikon.derive.binary.SequenceFloatSubsequence.enabled

Boolean. True iff SequenceFloatSubsequence derived variables should be generated.
The default value is ‘false’.

daikon.derive.binary.SequenceFloatUnion.enabled

Boolean. True iff SequenceFloatUnion derived variables should be generated. The
default value is ‘false’.

daikon.derive.binary.SequenceScalarIntersection.enabled

Boolean. True iff SequenceScalarIntersection derived variables should be generated.
The default value is ‘false’.

daikon.derive.binary.SequenceScalarSubscript.enabled

Boolean. True iff SequenceScalarSubscript derived variables should be generated.
The default value is ‘true’.

daikon.derive.binary.SequenceScalarSubsequence.enabled

Boolean. True iff SequenceScalarSubsequence derived variables should be generated.
The default value is ‘false’.

daikon.derive.binary.SequenceScalarUnion.enabled

Boolean. True iff SequenceScalarUnion derived variables should be generated. The
default value is ‘false’.
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daikon.derive.binary.SequenceStringIntersection.enabled

Boolean. True iff SequenceStringIntersection derived variables should be generated.
The default value is ‘false’.

daikon.derive.binary.SequenceStringSubscript.enabled

Boolean. True iff SequenceStringSubscript derived variables should be generated.
The default value is ‘true’.

daikon.derive.binary.SequenceStringSubsequence.enabled

Boolean. True iff SequenceStringSubsequence derived variables should be generated.
The default value is ‘false’.

daikon.derive.binary.SequenceStringUnion.enabled

Boolean. True iff SequenceStringUnion derived variables should be generated. The
default value is ‘false’.

daikon.derive.binary.SequencesConcat.enabled

Boolean. True iff SequencesConcat derived variables should be created. The default
value is ‘false’.

daikon.derive.binary.SequencesJoin.enabled

Boolean. True iff SequencesJoin derived variables should be generated. The default
value is ‘false’.

daikon.derive.binary.SequencesJoinFloat.enabled

Boolean. True iff SequencesJoin derived variables should be generated. The default
value is ‘false’.

daikon.derive.binary.SequencesPredicate.boolOnly

Boolean. True if Daikon should only generate derivations on boolean predicates. The
default value is ‘true’.

daikon.derive.binary.SequencesPredicate.enabled

Boolean. True iff SequencesPredicate derived variables should be generated. The
default value is ‘false’.

daikon.derive.binary.SequencesPredicate.fieldOnly

Boolean. True if Daikon should only generate derivations on fields of the same data
structure. The default value is ‘true’.

daikon.derive.binary.SequencesPredicateFloat.boolOnly

Boolean. True if Daikon should only generate derivations on boolean predicates. The
default value is ‘true’.

daikon.derive.binary.SequencesPredicateFloat.enabled

Boolean. True iff SequencesPredicate derived variables should be generated. The
default value is ‘false’.

daikon.derive.binary.SequencesPredicateFloat.fieldOnly

Boolean. True if Daikon should only generate derivations on fields of the same data
structure. The default value is ‘true’.
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daikon.derive.ternary.SequenceFloatArbitrarySubsequence.enabled

Boolean. True iff SequenceFloatArbitrarySubsequence derived variables should be
generated. The default value is ‘false’.

daikon.derive.ternary.SequenceScalarArbitrarySubsequence.enabled

Boolean. True iff SequenceScalarArbitrarySubsequence derived variables should be
generated. The default value is ‘false’.

daikon.derive.ternary.SequenceStringArbitrarySubsequence.enabled

Boolean. True iff SequenceStringArbitrarySubsequence derived variables should be
generated. The default value is ‘false’.

daikon.derive.unary.SequenceInitial.enabled

Boolean. True iff SequenceInitial derived variables should be generated. The default
value is ‘false’.

daikon.derive.unary.SequenceInitialFloat.enabled

Boolean. True iff SequenceInitial derived variables should be generated. The default
value is ‘false’.

daikon.derive.unary.SequenceLength.enabled

Boolean. True iff SequenceLength derived variables should be generated. The default
value is ‘true’.

daikon.derive.unary.SequenceMax.enabled

Boolean. True iff SequencesMax derived variables should be generated. The default
value is ‘false’.

daikon.derive.unary.SequenceMin.enabled

Boolean. True iff SequenceMin derived variables should be generated. The default
value is ‘false’.

daikon.derive.unary.SequenceSum.enabled

Boolean. True iff SequenceSum derived variables should be generated. The default
value is ‘false’.

daikon.derive.unary.StringLength.enabled

Boolean. True iff StringLength derived variables should be generated. The default
value is ‘false’.

6.1.1.5 Simplify interface configuration options

The configuration options in this section are used to customize the interface to the
Simplify theorem prover. See the description of the --suppress_redundant command-line
option in Section 4.2 [Options to control invariant detection], page 20.

daikon.simplify.LemmaStack.print_contradictions

Boolean. Controls Daikon’s response when inconsistent invariants are discovered while
running Simplify. If true, Daikon will print an error message to the standard error
stream listing the contradictory invariants. This is mainly intended for debugging
Daikon itself, but can sometimes be helpful in tracing down other problems. For
more information, see the section on troubleshooting contradictory invariants in the
Daikon manual. The default value is ‘false’.
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daikon.simplify.LemmaStack.remove_contradictions

Boolean. Controls Daikon’s response when inconsistent invariants are discovered while
running Simplify. If false, Daikon will give up on using Simplify for that program
point. If true, Daikon will try to find a small subset of the invariants that cause the
contradiction and avoid them, to allow processing to continue. For more information,
see the section on troubleshooting contradictory invariants in the Daikon manual.
The default value is ‘true’.

daikon.simplify.LemmaStack.synchronous_errors

Boolean. If true, ask Simplify to check a simple proposition after each assumption
is pushed, providing an opportunity to wait for output from Simplify and potent-
ially receive error messages about the assumption. When false, long sequences of
assumptions may be pushed in a row, so that by the time an error message arrives,
it’s not clear which input caused the error. Of course, Daikon’s input to Simplify isn’t
supposed to cause errors, so this option should only be needed for debugging. The
default value is ‘false’.

daikon.simplify.Session.simplify_max_iterations

A non-negative integer, representing the largest number of iterations for which
Simplify should be allowed to run on any single conjecture before giving up. Larger
values may cause Simplify to run longer, but will increase the number of invariants
that can be recognized as redundant. The default value is small enough to keep
Simplify from running for more than a few seconds on any one conjecture, allowing
it to verify most simple facts without getting bogged down in long searches. A
value of 0 means not to bound the number of iterations at all, though see also the
simplify_timeout parameter.. The default value is ‘1000’.

daikon.simplify.Session.simplify_timeout

A non-negative integer, representing the longest time period (in seconds) Simplify
should be allowed to run on any single conjecture before giving up. Larger values
may cause Simplify to run longer, but will increase the number of invariants that can
be recognized as redundant. Roughly speaking, the time spent in Simplify will be
bounded by this value, times the number of invariants generated, though it can be
much less. A value of 0 means to not bound Simplify at all by time, though also see
the option simplify_max_iterations. Beware that using this option might make
Daikon’s output depend on the speed of the machine it’s run on. The default value
is ‘0’.

daikon.simplify.Session.trace_input

Boolean. If true, the input to the Simplify theorem prover will also be directed to a
file named simplifyN.in (where N is a number starting from 0) in the current directory.
Simplify’s operation can then be reproduced with a command like Simplify -nosc

<simplify0.in. This is intended primarily for debugging when Simplify fails. The
default value is ‘false’.

daikon.simplify.Session.verbose_progress

Positive values mean to print extra indications as each candidate invariant is passed
to Simplify during the --suppress_redundant check. If the value is 1 or higher, a
hyphen will be printed when each invariant is passed to Simplify, and then replaced by
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a T if the invariant was redundant, F if it was not found to be, and ? if Simplify gave
up because of a time limit. If the value is 2 or higher, a < or > will also be printed
for each invariant that is pushed onto or popped from from Simplify’s assumption
stack. This option is mainly intended for debugging purposes, but can also provide
something to watch when Simplify takes a long time. The default value is ‘0’.

6.1.1.6 Splitter options

The configuration options in this section are used to customize the the behavior of spl-
itters, which yield conditional invariants and implications (see Section 6.2 [Conditional
invariants], page 82).

daikon.split.ContextSplitterFactory.granularity

Enumeration (integer). Specifies the granularity to use for callsite splitter processing.
(That is, for creating invariants for a method that are dependent on where the method
was called from.) 0 is line-level granularity; 1 is method-level granularity; 2 is class-
level granularity. The default value is ‘1’.

daikon.split.PptSplitter.disable_splitting

Boolean. If set, the built-in splitting rules are disabled. The built-in rules look for
implications based on boolean return values and also when there are exactly two exit
points from a method. The default value is ‘false’.

daikon.split.PptSplitter.dummy_invariant_level

Integer. A value of zero indicates that DummyInvariant objects should not be created.
A value of one indicates that dummy invariants should be created only when no
suitable condition was found in the regular output. A value of two indicates that
dummy invariants should be created for each splitting condition. The default value
is ‘0’.

daikon.split.PptSplitter.split_bi_implications

Split bi-implications ("a <==> b") into two separate implications ("a ==> b" and
"b ==> a"). The default value is ‘false’.

daikon.split.PptSplitter.suppressSplitterErrors

When true, compilation errors during splitter file generation will not be reported to
the user. The default value is ‘true’.

daikon.split.SplitterFactory.compile_timeout

Positive integer. Specifies the Splitter compilation timeout, in seconds, after which
the compilation process is terminated and retried, on the assumption that it has hung.
The default value is ‘20’.

daikon.split.SplitterFactory.compiler

String. Specifies which Java compiler is used to compile Splitters. This can be the
full path name or whatever is used on the command line.

By default, $DAIKONDIR/java is part of the classpath. This is useful when working
from the sources directly.
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The default value is "javac -classpath $DAIKONDIR/daikon.jar:$DAIKONDIR/java"
(with appropriate classpath separator for the operating system).

daikon.split.SplitterFactory.delete_splitters_on_exit

Boolean. If true, the temporary Splitter files are deleted on exit. Set it to "false" if
you are debugging splitters. The default value is ‘true’.

daikon.split.SplitterList.all_splitters

Boolean. Enables indiscriminate splitting (see Daikon manual, Section 6.2.2 [Indis-
criminate splitting], page 85, for an explanation of this technique). The default value
is ‘true’.

6.1.1.7 Debugging options

The configuration options in this section are used to cause extra output that is useful for
debugging.

daikon.Debug.internal_check

When true, perform detailed internal checking. These are essentially additional,
possibly costly assert statements. The default value is ‘false’.

daikon.Debug.logDetail

Determines whether or not detailed info (such as from add_modified) is printed. The
default value is ‘false’.

daikon.Debug.showTraceback

Determines whether or not traceback information is printed for each call to log. The
default value is ‘false’.

daikon.Debug.show_stack_trace

If true, show stack traces for errors such as file format errors. The default value is
‘false’.

6.1.1.8 General configuration options

This section lists miscellaneous configuration options for Daikon.

daikon.Daikon.calc_possible_invs

Boolean. Just print the total number of possible invariants and exit. The default
value is ‘false’.

daikon.Daikon.enable_floats

Boolean. Controls whether invariants are reported over floating-point values. The
default value is ‘true’.

daikon.Daikon.guardNulls

If "always", then invariants are always guarded. If "never", then invariants are never
guarded. If "missing", then invariants are guarded only for variables that were missing
("can be missing") in the dtrace (the observed executions). If "default", then use
"missing" mode for Java output and "never" mode otherwise.
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Guarding means adding predicates that ensure that variables can be dereferenced.
For instance, if a can be null — that is, if a.b can be nonsensical — then the guarded
version of

a.b == 5

is

(a != null) -> (a.b == 5)

.

(To do: Some configuration option (maybe this one) should add guards for other
reasons that lead to nonsensical values (see Section 5.3 [Variable names], page 26).)
The default value is ‘default’.

daikon.Daikon.output_conditionals

Boolean. Controls whether conditional program points are displayed. The default
value is ‘true’.

daikon.Daikon.ppt_perc

Integer. Percentage of program points to process. All program points are sorted
by name, and all samples for the first ppt_perc program points are processed. A
percentage of 100 matches all program points. The default value is ‘100’.

daikon.Daikon.print_sample_totals

Boolean. Controls whether or not the total samples read and processed are printed
at the end of processing. The default value is ‘false’.

daikon.Daikon.progress_delay

The amount of time to wait between updates of the progress display, measured in
milliseconds. A value of -1 means do not print the progress display at all. The
default value is ‘1000’.

daikon.Daikon.progress_display_width

The number of columns of progress information to display. In many Unix shells, this
can be set to an appropriate value by --config_option daikon.Daikon.progress_

display_width=$COLUMNS. The default value is ‘80’.

daikon.Daikon.quiet

Boolean. Controls whether or not processing information is printed out. Setting this
variable to true also automatically sets progress_delay to -1. The default value is
‘false’.

daikon.Daikon.undo_opts

Boolean. Controls whether the Daikon optimizations (equality sets, suppressions)
are undone at the end to create a more complete set of invariants. Output does
not include conditional program points, implications, reflexive and partially reflexive
invariants. The default value is ‘false’.

daikon.DynamicConstants.OneOf_only

Boolean. If true only create OneOf invariants for variables that are constant for
the entire run. If false, all possible invariants are created between constants. Note
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that setting this to true only fails to create invariants between constants. Invariants
between constants and non-constants are created regardless.

A problem occurs with merging when this is turned on. If a var info is constant at
one child slice, but not constant at the other child slice, interesting invariants may
not be merged because they won’t exist on the slice with the constant. This is thus
currently defaulted to false. The default value is ‘false’.

daikon.DynamicConstants.use_dynamic_constant_optimization

Whether to use the dynamic constants optimization. This optimization doesn’t in-
stantiate invariants over constant variables (i.e., that that have only seen one value).
When the variable receives a second value, invariants are instantiated and are given
the sample representing the previous constant value. The default value is ‘true’.

daikon.FileIO.add_changed

Boolean. When false, set modbits to 1 iff the printed representation has changed.
When true, set modbits to 1 if the printed representation has changed; leave other
modbits as is. The default value is ‘true’.

daikon.FileIO.continue_after_file_exception

Boolean. When true, suppress exceptions related to file reading. This permits Daikon
to continue even if there is a malformed trace file. Use this with care: in general, it
is better to fix the problem that caused a bad trace file, rather than to suppress the
exception. The default value is ‘false’.

daikon.FileIO.count_lines

Boolean. When false, don’t count the number of lines in the dtrace file before reading.
This will disable the percentage progress printout. The default value is ‘true’.

daikon.FileIO.dtrace_line_count

Long integer. If non-zero, this value will be used as the number of lines in (each)
dtrace file input for the purposes of the progress display, and the counting of the lines
in the file will be suppressed. The default value is ‘0’.

daikon.FileIO.ignore_missing_enter

When true, just ignore exit ppts that don’t have a matching enter ppt rather than
exiting with an error. Unmatched exits can occur if only a portion of a dtrace file is
processed. The default value is ‘false’.

daikon.FileIO.max_line_number

Integer. Maximum number of lines to read from the dtrace file. If 0, reads the entire
file. The default value is ‘0’.

daikon.FileIO.read_samples_only

Boolean. When true, only read the samples, but don’t process them. Used to gather
timing information. The default value is ‘false’.

daikon.FileIO.rm_stack_dups

If true, modified all ppt names to remove duplicate routine names within the ppt
name. This is used when a stack trace (of active methods) is used as the ppt name.
The routine names must be separated by vertical bars (|). The default value is ‘false’.
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daikon.FileIO.unmatched_procedure_entries_quiet

Boolean. When true, don’t print a warning about unmatched procedure entries, which
are ignored by Daikon (unless the –nohierarchy switch is provided). The default value
is ‘false’.

daikon.FileIO.verbose_unmatched_procedure_entries

Boolean. If true, prints the unmatched procedure entries verbosely. The default value
is ‘false’.

daikon.PptRelation.enable_object_user

Boolean. Controls whether the object-user relation is created in the variable hierarchy.
The default value is ‘false’.

daikon.PptSliceEquality.set_per_var

If true, create one equality set for each variable. This has the effect of turning the
equality optimization off, without actually removing the sets themselves (which are
presumed to exist in many parts of the code). The default value is ‘false’.

daikon.PptTopLevel.pairwise_implications

Boolean. If true, create implications for all pairwise combinations of conditions, and
all pairwise combinations of exit points. If false, create implications for only the first
two conditions, and create implications only if there are exactly two exit points. The
default value is ‘false’.

daikon.PptTopLevel.remove_merged_invs

Remove invariants at lower program points when a matching invariant is created at
a higher program point. For experimental purposes only. The default value is ‘false’.

daikon.PrintInvariants.old_array_names

In the new decl format, print array names as ’a[]’ as opposed to ’a[..]’ This creates
names that are more compatible with the old output. This option has no effect in
the old decl format. The default value is ‘true’.

daikon.PrintInvariants.print_all

If true, print all invariants without any filtering. The default value is ‘false’.

daikon.PrintInvariants.print_implementer_entry_ppts

If false, don’t print entry method program points for methods that override or implem-
ent another method (i.e., entry program points that have a parent that is a method).
Microsoft Code Contracts does not allow contracts on such methods. The default
value is ‘true’.

daikon.PrintInvariants.print_inv_class

Print invariant classname with invariants in output of format() method, normally
used only for debugging output rather than ordinary printing of invariants. The
default value is ‘false’.

daikon.PrintInvariants.remove_post_vars

If true, remove as many variables as possible that need to be indicated as ’post’. Post
variables occur when the subscript for a derived variable with an orig sequence is
not orig. For example: orig(a[post(i)]) An equivalent expression involving only orig
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variables is substitued for the post variable when one exists. The default value is
‘false’.

daikon.PrintInvariants.replace_prestate

This option must be given with "–format Java" option.

Instead of outputting prestate expressions as "\old(E)" within an invariant, output a
variable name (e.g. ‘v1’). At the end of each program point, output the list of variable-
to-expression mappings. For example: with this option set to false, a program point
might print like this:

foo.bar.Bar(int):::EXIT

\old(capacity) == sizeof(this.theArray)

With the option set to true, it would print like this:

foo.bar.Bar(int):::EXIT

v0 == sizeof(this.theArray)

prestate assignment: v0=capacity

The default value is ‘true’.

daikon.PrintInvariants.static_const_infer

This enables a different way of treating static constant variables. They are not created
into invariants into slices. Instead, they are examined during print time. If a unary
invariant contains a value which matches the value of a static constant varible, the
value will be replaced by the name of the variable, "if it makes sense". For example,
if there is a static constant variable a = 1. And if there exists an invariant x <= 1, x
<= a would be the result printed. The default value is ‘false’.

daikon.PrintInvariants.true_inv_cnt

If true, print the total number of true invariants. This includes invariants that are
redundant and would normally not be printed or even created due to optimizations.
The default value is ‘false’.

daikon.ProglangType.convert_to_signed

If true, treat 32 bit values whose high bit is on, as a negative number (rather than as
a 32 bit unsigned). The default value is ‘false’.

daikon.VarInfo.constant_fields_simplify

If true, the treat static constants (such as MapQuick.GeoPoint.FACTOR) as fields
within an object rather than as a single name. Not correct, but used to obtain
compatibility with VarInfoName. The default value is ‘true’.

daikon.VarInfo.declared_type_comparability

If true, then variables are only considered comparable if they are declared with the
same type. For example, java.util.List is not comparable to java.util.ArrayList and
float is not comparable to double. This may miss valid invariants, but significant time
can be saved and many variables with different declared types are not comparable
(e.g., java.util.Date and java.util.ArrayList). The default value is ‘true’.

daikon.chicory.DaikonVariableInfo.constant_infer

Enable experimental techniques on static constants. The default value is ‘false’.
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daikon.suppress.NIS.enabled

Boolean. If true, enable non-instantiating suppressions. The default value is ‘true’.

daikon.suppress.NIS.hybrid_threshhold

Int. Less and equal to this number means use the falsified method in the hybrid
method of processing falsified invariants, while greater than this number means use
the antecedent method. Empirical data shows that number should not be more than
10000. The default value is ‘2500’.

daikon.suppress.NIS.skip_hashcode_type

Boolean. If true, skip variables of file rep type hashcode when creating invariants
over constants in the antecedent method. The default value is ‘true’.

daikon.suppress.NIS.suppression_processor

Specifies the algorithm that NIS uses to process suppressions. Possible selections are
’HYBRID’, ’ANTECEDENT’, and ’FALSIFIED’. The default is the hybrid algorithm
which uses the falsified algorithm when only a small number of suppressions need to
be processed and the antecedent algorithm when a large number of suppressions are
processed. The default value is ‘HYBRID’.

daikon.suppress.NIS.suppressor_list

Boolean. If true, use the specific list of suppressor related invariant prototypes when
creating constant invariants in the antecedent method. The default value is ‘true’.

6.2 Conditional invariants (disjunctions) and implications

Conditional invariants are invariants that are true only part of the time. For instance,
consider the absolute value procedure. Its postcondition is

if arg < 0

then return == -arg

else return == arg

The invariant return == -arg is a conditional invariant because it depends on the predicate
arg < 0 being true. An implication is a compound invariant that includes both the predicate
and the conditional invariant (also called the consequent); an example of an implication is
arg < 0 ==> return == -arg.

Another type of implication is a context-sensitive invariant — a fact about method A that
is true only when A is called by method B, but not true in general about A. You can use
the configuration option daikon.split.ContextSplitterFactory.granularity to control
creation of context-sensitive invariants. Alternately, you can use implications to construct
context-sensitive invariants: set a variable that depends on the call site, then compute an
implication whose predicate tests that variable. For an example, see the paper Selecting,
refining, and evaluating predicates for program analysis (http://plse.cs.washington.
edu/daikon/pubs/predicates-tr914-abstract.html).

Daikon must be supplied with the predicate for an implication. Daikon has certain built-in
predicates that it uses for finding conditional invariants; examples are which return statem-
ent was executed in a procedure and whether a boolean procedure returns true or false. Add-
itionally, Daikon can read predicates from a file called a splitter info (.spinfo) file and find
implications based on those predicates. The splitter info file can be produced automatically,
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such as by static analysis of the program using the CreateSpinfo and CreateSpinfoC

programs (see Section 6.3.1 [Static analysis for splitters], page 87) or by cluster analysis of
the traced values in the data trace file. Details of these techniques and usage guides can be
found in Section 6.3 [Enhancing conditional invariant detection], page 86. Users can also
create splitter info files themselves or can augment automatically-created ones.

To detect conditional invariants and implications:

1. Create the splitter info file, either automatically or by hand.

2. Run Daikon with the .spinfo file as one of its arguments. (The order of arguments
does not matter.) For example,

java daikon.Daikon Foo.decls Foo.spinfo Foo.dtrace

The term splitter comes from Daikon’s technique for detecting implications and condit-
ional invariants. For each predicate, Daikon creates two conditional program points — one
for program executions that satisfy the condition and one for those that don’t — and splits
the data trace into two parts. Invariant detection is then performed on the conditional
program points (that is, the parts of the data trace) separately and any invariants detected
are reported as conditional invariants (as implications).

To be precise, we say that an invariant holds exclusively if it is discovered on one side
of a split, and its negation is discovered on the opposite side. Daikon creates conditional
invariants whose predicates are invariants that hold exclusively on one side of a split, and
whose consequents are invariants that hold on that side of the split but not on the unsplit
program point. If Daikon finds multiple exclusive conditions, it will create biconditional
(“if and only if”) invariants between the equivalent conditions. Within the context of the
program, each of the exclusive conditions is equivalent to the splitting condition. In parti-
cular, if both the splitting condition and its negation are within the grammar of invariants
that Daikon detects, the splitting condition may appear as the predicate of the generated
conditional invariants. On the other hand, if other equivalent conditions are found, or if
the splitting condition is not expressible in Daikon’s grammar, it might not appear in the
generated implications.

In some cases, the default policy of selecting predicates from Daikon’s output may
be insufficient. For instance, Daikon might not detect any invariant equivalent to the
splitting condition, if the splitting condition is sufficiently complex or application-specific.
In such situations, Daikon can also use the splitting condition itself, as what is
called a dummy invariant. To use dummy invariants, set the configuration option
daikon.split.PptSplitter.dummy_invariant_level to a non-zero value (see
Section 6.1.1 [List of configuration options], page 55).

6.2.1 Splitter info file format

A splitter info file contains the conditions that Daikon should use to create conditional
invariants. Each section in the .spinfo file consists of a sequence of non-blank lines; sections
are separated by blank lines. There are two types of sections: program point sections and
replacement sections. See Section 6.2.3 [Example splitter info file], page 85, for an example
splitter info file.
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6.2.1.1 Program point sections

Program point sections have a line specifying a program point name followed by lines
specifying the condition(s) associated with that program point, each condition on its own
line. Additional information about a condition may be specified on indented lines. For
example, a typical entry is

PPT_NAME pptname

condition1

condition2

DAIKON_FORMAT string

ESC_FORMAT string

condition3

...

pptname can be any string that matches a part of the desired program point name as
printed in the .decls file. In finding matching program points, Daikon uses the first
program point that matches pptname. Caution is necessary when dealing with method
names that are prefixes of other method names. For instance, if the class List has methods
add and addAll, specifying ‘PPT_NAME List.add’ might select either method, depending
on which was encountered first. Instead writing ‘PPT_NAME List.add(’ will match only the
add method.

Each condition is a Java expression of boolean type. All variables that appear in the
condition must also appear in the declaration of the program point in the .decls file. (In
other words, all the variables must be in scope at the program point(s) where the Splitter is
intended to operate.) The automatically generated Splitter source code fails to compile (but
Daikon proceeds without it) if a variable name in a condition is not found at the matching
program point.

An indented lines beginning with ‘DAIKON_FORMAT’, ‘JAVA_FORMAT’, ‘ESC_FORMAT’, or
‘SIMPLIFY_FORMAT’ specifies how to print the condition. These are optional; for any Daikon
output format that is omitted, the Java condition itself is used. The alternate printed
representation is used when the splitting condition is used as a dummy invariant; see con-
figuration option daikon.split.PptSplitter.dummy_invariant_level.

6.2.1.2 Replacement sections

Ordinarily, a splitting condition may not invoke user-defined methods, because when
Daikon reads data trace files, it does not have access to the program source. A replace
section of the splitter info file can specify the bodies of methods, permitting conditions to
invoke those methods. The format is as follows:

REPLACE

procedure1

replacement1

procedure2

replacement2

...
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where replacementi is a Java expression for the body of procedurei. In each condition,
Daikon replaces procedure calls by their replacements. A replace section may appear an-
ywhere in the splitter info file.

6.2.2 Indiscriminate splitting

Each condition in an .spinfo is associated with a program point. The condition can
be used at only that program point by placing the following line in a file that is passed to
Daikon via the --config flag (see Section 4.4 [Daikon configuration options], page 22):

daikon.split.SplitterList.all_splitters = false

The default, called indiscriminate splitting, is to use every condition at every program
point, regardless of where in the .spinfo file the condition appeared.

The advantage of indiscriminate splitting is that a condition that is useful at one program
point may also be useful at another — if the same variables are in scope or other variables
of the same name are in scope. The disadvantage of indiscriminate splitting is that it slows
Daikon down.

Daikon uses a condition only where it can be used. For example, the condition
myArray.length == x is applicable only at program points that have variables named
myArray and x. To see warnings about places a splitting condition cannot be used
(reported as failure to compile splitters at those locations), place the following line in a
file that is passed to Daikon via the --config flag (see Section 4.4 [Daikon configuration
options], page 22):

daikon.split.SplitterList.all_splitters_errors = true

6.2.3 Example splitter info file

Below is an implementation of a simple Queue for positive integers and a corresponding
.spinfo file. The splitter info file is like the one that CreateSpinfo would create for that
class, but also demonstrates some other features.

6.2.3.1 Example class
class simpleStack {

private int[] myArray;

private int currentSize;

public simpleStack(int capacity) {

myArray = new int[capacity];

currentSize = 0;

}

/** Adds an element to the back of the stack, if the stack is

* not full.

* Returns true if this succeeds, false otherwise. **/

public String push(int x) {

if ( !isFull() && x >= 0) {

myArray[currentSize] = x;

currentSize++;

return true;

} else {
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return false;

}

}

/** Returns the most recently inserted stack element.

* Returns -1 if the stack is empty. **/

public int pop() {

if ( !isEmpty() ) {

currentSize--;

return myArray[currentSize];

} else {

return -1;

}

}

/** Returns true if the stack is empty, false otherwise. **/

private boolean isEmpty() {

return (currentSize == 0);

}

/** Returns true if the stack is full, false otherwise. **/

private boolean isFull() {

return (currentSize == myArray.length);

}

}

6.2.3.2 Resulting .spinfo file
REPLACE

isFull()

currentSize == myArray.length

isEmpty()

currentSize == 0

PPT_NAME simpleStack.push

!isFull() && x >= 0

DAIKON_FORMAT !isFull() and x >= 0

SIMPLIFY_FORMAT (AND (NOT (isFull this)) (>= x 0))

PPT_NAME simpleStack.pop

!isEmpty()

PPT_NAME simpleStack.isFull

currentSize == myArray.length - 1

PPT_NAME simpleStack.isEmpty

currentSize == 0

6.3 Enhancing conditional invariant detection

The built-in mechanisms (see Section 6.2 [Conditional invariants], page 82) have lim-
itations in the invariants they can find. By supplying splitting conditions to Daikon via a
splitter info file, the user can infer more conditional invariants. To ease this task, there are
methods to automatically create splitter info files for use by Daikon.
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6.3.1 Static analysis for splitters

In static analysis, all boolean statements in the program source are extracted and used
as splitting conditions. The assumption is that conditions that are explicitly tested in the
program are likely to affect the program’s behavior and could lead to useful conditional
invariants. The simple heuristic of using these conditional statements as predicates for
conditional invariant detection is often quite effective.

6.3.1.1 Static analysis of Java for splitters

The CreateSpinfo program takes Java source code as input and creates a splitter info
file for each Java file; for instance,

java daikon.tools.jtb.CreateSpinfo Foo.java Bar.java

creates the splitter info files Foo.spinfo and Bar.spinfo. Given an -o filename argument,
CreateSpinfo puts all the splitters in the specified file instead. The resulting splitter info
file(s) contains each boolean expression that appears in the source code.

If you get an error such as

jtb.ParseException: Encountered ";" at line 253, column 8.

Was expecting one of: "abstract" ...

then you may have encountered a bug in the JTB library on which CreateSpinfo is built.
It does not permit empty declarations in a class body. Remove the extra semicolon in your
Java file (at the indicated position) and re-rerun CreateSpinfo.

6.3.1.2 Static analysis of C for splitters

The CreateSpinfoC program performs the same function for C source code as
CreateSpinfoC does for Java. CreateSpinfoC can only be run on postprocessed source
files—that is, source files contain no CPP commands. CPP commands are lines starting with
‘#’, such as ‘#include’. To expand CPP commands into legal C, run either cpp -P or gcc
-P -E. For instance, here is how you could use CreateSpinfoC:

cpp -P foo.c foo.c-expanded

cpp -P bar.c bar.c-expanded

java daikon.tools.jtb.CreateSpinfoC \

foo.c-expanded bar.c-expanded

WARNING: The names produced by CreateSpinfoC sometimes differ from the names
produced by Kvasir. For example, suppose you have a C file that contains a function
‘foo’. Then CreateSpinfoC may create a .spinfo file that mentions a program point
named ‘std.foo’, whereas Kvasir creates a .dtrace file that mentions a program point
named ‘..foo’. Such a mismatch will cause Daikon to produce no conditional invariants
for the given program point. This is a bug that needs to be fixed! (Patches are welcome.)
In the meanwhile, you can edit the generated .spinfo file to conform to the .dtrace file’s
naming conventions.

If you get an error such as

... Lexical error at line 5, column 1.

Encountered: "#" (35), after : ""

then you forgot to run CPP before running CreateSpinfoC.
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If you get an error such as

CreateSpinfoC encountered errors during parse.

Encountered "__extension__ typedef struct { ...

then your program uses non-standard C syntax. The ‘__extension__’ keyword is supported
only by the GCC compiler, and isn’t handled by the CreateSpinfoC program. You could
extend the CreateSpinfoC program to handle non-standard GCC extensions, or you could
remove non-standard GCC extensions from your program. The extensions might also result
from standard libraries rather than your own program — removing a directives such as
‘#include <stdio.h>’ when preprocessing may also resolve the problem.

6.3.2 Cluster analysis for splitters

Cluster analysis is a statistical method that finds groups or clusters in data. The clusters
may indicate conditional properties in the program. The cluster analysis mechanism finds
clusters in the data trace file, infers invariants over any clusters that it finds, and writes
these invariants into a splitter info file. Then, you supply the splitter info file to Daikon in
order to infer conditional invariants.

To find splitting conditions using cluster analysis, run the runcluster.pl program (found
in the $DAIKONDIR/scripts directory) in the following way:

runcluster.pl [options] dtrace_file ... decls_files ...

The options are:

-a ALG

--algorithm ALG

ALG specifies a clustering algorithm. Current options are ‘km’ (for kmeans),
‘hierarchical’, and ‘xm’ (for xmeans). The default is ‘xm’.

-k The number of clusters to use (for algorithms which require this input, which is
everything except xmeans). The default is 4.

--keep

Don’t delete the temporary files created by the clustering process. This is a debugging
flag.

The runcluster.pl script currently supports three clustering programs. They are
implementations of the kmeans algorithm, hierarchical clustering, and the xmeans
algorithm (kmeans algorithm with efficient discovery of the number of clusters). The
kmeans and hierarchical clustering tools are provided in the Daikon distribution. The
xmeans code and executable are publicly available at http://www.cs.cmu.edu/~dpelleg/
kmeans.html (fill in the license form and mail it in).

6.3.3 Random selection for splitters

Random selection can create representative samples of a data set with the added benefit of
finding conditional properties and eliminating outliers. Given trace data, the TraceSelect
tool creates several small subsets of the data by randomly selecting parts of the original
trace file. Any invariant that is discovered in the smaller samples but not found over the
entire data is a conditional invariant.
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To find splitting conditions using random selection, run the daikon.tools.TraceSelect
program in the following way:

java daikon.tools.TraceSelect num_reps sample_size [options] \

dtrace_file decls_files ... [daikon_options]

num reps is the number of subsets to create, and sample size is the number of invocations
to collect for each method.

The daikon options are the same options that can be provided to the daikon.Daikon

program.

The options for TraceSelect are:

-NOCLEAN

Don’t delete the temporary trace samples created by the random selection process.
This can help for debugging or for using the tool solely to create trace samples instead
of calculating invariants over the samples.

-INCLUDE_UNRETURNED

Allows random selection to choose method invocations that entered the method succ-
essfully but did not exit normally; either from a thrown Exception or abnormal term-
ination.

-DO_DIFFS

Creates an .spinfo file for generating conditional invariants and implications by
reporting the invariants that appear in at least one of the samples but not over the
entire data set.

6.4 Dynamic abstract type inference (DynComp)

Abstract types group variables that are used for related purposes in a program. For
example, suppose that some int variables in your program are array lengths or indices, and
other int variables represent time. Even thought these variables have the same type (int)
in the programming language, they have different abstract types.

Abstract types can be provided as additional input to Daikon, so that it only infers invar-
iants between values of the same abstract type. This can improve Daikon’s performance,
because it reduces the number of potential invariants that must be checked, and also improve
the relevance of its output, since invariants over unrelated variables are superfluous for many
tasks. The Daikon distribution includes a tool named DynComp that dynamically infers
abstract types (also called comparability types) from program executions. (In fact, there
are two implementations of DynComp that use the same algorithm, one for Java programs
and one for binaries compiled from C and C++ source code. When confusion would oth-
erwise arise, we distinguish them as DynCompJ (or DynComp for Java) and DynCompB (or
DynComp for C/C++) respectively.)

Because abstract type inference must be performed before Daikon runs, it is integrated
with the front-ends rather than directly as part of Daikon.

• The Java DynComp tool produces a comparability file that must then be supplied to
the Chicory Java front-end. For examples of using DynComp with Java programs, see
Section 3.1.3 [Using DynComp with Java programs], page 10. For full details about
the DynComp tool for Java, see Section 7.2 [DynComp for Java], page 98.
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• The Kvasir front-end for C/C++ binaries has a DynComp mode in which it produces a
separate .decls file containing comparability information, which must be supplied to
Daikon along with the .dtrace file. For examples of using DynComp with C programs,
see Section 3.2.2 [Using DynComp with C programs], page 14. For full details about
the DynComp tool for C/C++, see Section 7.3.3 [DynComp for C/C++], page 112.

• The Celeriac front-end for .NET programs can compute variable comparability. It does
so statically by examining the program text, rather than dynamically by running the
program as DynComp does. For full details about variable comparability in Celeriac,
see https://github.com/codespecs/daikon-dot-net-front-end.

6.5 Loop invariants

Daikon does not by default output loop invariants. Daikon can detect invariants at any
location where it is provided with variable values, but currently Daikon’s front ends do not
supply Daikon with variable values at loop heads.

You could extend a front end to output more variable values, or you could write a new
front end.

Alternately, here is a way to use the current front ends to produce loop invariants. This
workaround requires you to change your program, but it requires no change to Daikon or
its front ends.

At the top of a loop (or at any other location in the program at which you would like
to obtain invariants), insert a call to a dummy procedure that does no work but returns
immediately. Pass, as arguments to the dummy procedure, all variables of interest (including
local variables). Daikon will produce (identical) preconditions and postconditions for the
dummy procedure; these are properties that held at the call site.

For instance, you might change the original code

public void calculate(int x) {

int tmp = 0;

while (x > 0) {

// you desire to compute an invariant here

tmp=tmp+x;

x=x-1;

}

}

into

public void calculate(int x) {

int tmp = 0;

while (x > 0) {

calculate_loophead(x, tmp);

tmp=tmp+x;

x=x-1;

}

}

// dummy procedure
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public void calculate_loophead(int x, int tmp) {

}
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7 Front ends (instrumentation)

The Daikon invariant detector is a machine learning tool that finds patterns (invariants)
in data. That data can come from any source, but Daikon is typically used to find invariants
over variable values in running programs. A front end is a tool that converts data from
some other format into Daikon’s input format. The most common type of front end is an
instrumenter, which causes your program to output a .dtrace file that Daikon can process,
or that you can process (see Section “Reading dtrace files” in Daikon Developer Manual).

This chapter describes several front ends (instrumenters) that are part of Daikon. It is
relatively easy to build your own front end, if these do not serve your purpose; we are aware
of a number of users who have done so. For more information about building a new front
end, see Section “New front ends” in Daikon Developer Manual.

7.1 Java front end Chicory

The Daikon front end for Java, named Chicory, executes Java programs, creates data
trace (.dtrace) files, and optionally runs Daikon on them. Chicory is named after the
chicory plant, whose root is sometimes used as a coffee substitute or flavor enhancer.

To use Chicory, run your program as you normally would, but replace the java command
with java daikon.Chicory. For instance, if you usually run

java mypackage.MyClass arg1 arg2 arg3

then instead you would run

java daikon.Chicory mypackage.MyClass arg1 arg2 arg3

This runs your program and creates file MyClass.dtrace in the current directory. Furth-
ermore, a single command can both create a trace file and run Daikon:

java daikon.Chicory --daikon mypackage.MyClass arg1 arg2 arg3

See below for more options.

That’s all there is to it! Since Chicory instruments class files directly as they are loaded
into Java, you do not need to perform separate instrumentation and recompilation steps.
However, you should compile your program with debugging information enabled (the -g

command-line switch to javac); otherwise, Chicory uses the names arg0, arg1, . . . as the
names of method arguments.

Chicory must be run in a version 7 (or later) JVM, but it is backward-compatible with
older versions of Java code. Chicory can process class files from any version of Java.

7.1.1 Chicory options

Chicory is invoked as follows:

java daikon.Chicory chicory-args classname args

where

java classname args

is a valid invocation of Java.

This section lists the optional command-line arguments to Chicory, which appear before
the classname on the Chicory command line.
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7.1.1.1 Program points in Chicory output

This section lists options that control which program points appear in Chicory’s output.

--ppt-select-pattern=regexp

Only produce trace output for classes/procedures/program points whose names match
the given regular expression. This option may be supplied multiple times, and may
be used in conjunction with --ppt-omit-pattern.

When this switch is supplied, filtering occurs in the following way: for each program
point, Chicory checks the fully qualified class name, the method name, and the the
program point name against each regexp that was supplied. If any of these match,
then the program point is included in the instrumentation.

Suppose that method bar is defined only in class C. Then to traces only bar, you
could match the method name (in any class) with regular expression ‘bar$’, or you
could match the program point name with ‘C\.bar\(’.

java daikon.Chicory --ppt-select-pattern=’bar$’ ...

java daikon.Chicory --ppt-select-pattern=’C\.bar\(’ ...

--ppt-omit-pattern=regexp

Do not produce data trace output for classes/procedures/program points whose names
match the given regular expression. This reduces the size of the data trace file and
also may make the instrumented program run faster, since it need not output those
variables.

This option works just like --ppt-select-pattern does, except that matching
program points are excluded, not included.

The --ppt-omit-pattern argument may be supplied multiple times, in order to sp-
ecify multiple omitting criteria. A program point is omitted if its fully qualified class,
fully qualified procedure name, or complete program point name exactly matches one
of the omitting criteria. A regular expression matches if it matches any portion of
the program point name. Note that currently only classes are matched, not each full
program point name. Thus, either all of a class’s methods are traced, or none of them
are.

Here are examples of how to avoid detecting invariants over various parts of your
program.

• omit a whole package:
java daikon.Chicory ’--ppt-omit-pattern=^junit\.’ ...

java daikon.Chicory ’--ppt-omit-pattern=^daikon\.util\..*’ ...

• omit a single class:
java daikon.Chicory ’--ppt-omit-pattern=HashSetLinear\$HslIterator’ ...

• omit a single method:
java daikon.Chicory ’--ppt-omit-pattern=StackAr.topAndPop()’ ...

• omit a single program point:
java daikon.Chicory ’--ppt-omit-pattern=StackAr.<init>(int):::EXIT33’ ...

--sample-start=sample-cnt

When this option is chosen, Chicory will record each program point until that
program point has been executed sample-cnt times. Chicory will then begin
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sampling. Sampling starts at 10% and decreases by a factor of 10 each time another
sample-cnt samples have been recorded. If sample-cnt is 0, then all calls will be
recorded.

--boot-classes=regex

Chicory treats classes that match the regex as boot classes. Such classes are not
instrumented.

7.1.1.2 Variables in Chicory output

This section lists options that control which variables appear in Chicory’s output.

--nesting-depth=n

Depth to which to examine structure components (default 2). This parameter determ-
ines which variables the front end causes to be output at runtime. For instance,
suppose that a program contained the following data structures and variables:

class A {

int x;

B b;

}

class B {

int y;

int z;

}

A myA;

class Link {

int val;

Link next;

}

Link myList;

• If depth=0, only the identities (hash codes) of myA and myList would be
examined; those variables could be determined to be equal or not equal to other
variables.

• If depth=1, then also MyA.b, myList.next, and the integers myA.x and
myList.val would be examined.

• If depth=2, then, in addition to the above, also MyA.b.y, MyA.b.z,
myList.next.next, and myList.next.val would be examined.

Values whose value is undefined are not examined. For instance, if myA is null on a
particular execution of a program point, then myA.b is not accessed on that execution
regardless of the depth parameter. That variable appears in the .dtrace file, but its
value is marked as nonsensical.

--omit-var=regex

Do not include variables whose name matches the regular expression. Variables will
be omitted from each program point in which they appear.
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--std-visibility

When this switch is on, Chicory will traverse exactly those fields that are visible
from a given program point. For instance, only the public fields of class pack1.B

will be included at a program point for class pack2.A whether or not pack1.B is
instrumented. By default, Chicory outputs all fields in instrumented classes (even
those that would not be accessible in Java code at the given program point) and
outputs no fields from uninstrumented classes (even those that are accessible). When
you supply --std-visibility, consider also supplying --purity-file to enrich the
set of expressions in Daikon’s output.

--purity-file=pure-methods-file

File pure-methods-file lists the pure methods (sometimes called observer methods) in
a Java program. Pure methods have no externally side effects, such as setting var-
iables or producing output. For example, most implementations of the hashCode(),
toString(), and equals() methods are pure.

For each variable, Chicory adds to the trace new fields that represent invoking each
pure method on the variable. (Currently, Chicory does so only for pure methods that
take no parameters, and obviously this mechanism is only useful for methods that
return a value: a pure method that returns no value does nothing!)

Here is an example:

class Point {

private int x, y;

public int radiusSquared() {

return x*x + y*y;

}

}

If radiusSquared() has been specified as pure, then for each point p, Chicory will
output the variables p.x, p.y, and p.radiusSquared(). Use of pure methods can
improve the Daikon output, since they represent information that the programmer
considered important but that is not necessarily stored in a variable.

Invoking a pure method at any time in an application should not change the appli-
cation’s behavior. If a non-pure method is listed in a purity file, then application
behavior can change. Chicory does not verify the purity of methods listed in the
purity file.

The purity file lists a set of methods, one per line. The format of each method is
given by the Sun JDK API:

The string is formatted as the method access modifiers, if any, followed by the
method return type, followed by a space, followed by the class declaring the
method, followed by a period, followed by the method name, followed by a par-
enthesized, comma-separated list of the method’s formal parameter types. If the
method throws checked exceptions, the parameter list is followed by a space,
followed by the word throws followed by a comma-separated list of the thrown
exception types. For example:

public boolean java.lang.Object.equals(java.lang.Object)
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The access modifiers are placed in canonical order as specified by "The Java
Language Specification". This is public, protected or private first, and then other
modifiers in the following order: abstract, static, final, synchronized native.

By convention, pure-methods-file has the suffix .pure. If pure-methods-file is sp-
ecified as a relative (not absolute) file name, it is searched for in the configuration
directory specified via --configs=directory, or in the current directory if no con-
figuration directory is specified.

One way to create a .pure file is to run the Purity Analysis Kit (http://jppa.
sourceforge.net/). If you supply the --daikon-purity-file when running the
Purity Analysis Kit, it writes a file that can be supplied to Chicory.

7.1.1.3 Chicory miscellaneous options

This section lists all other Chicory options — that is, all options that do not control
which program points and variables appear in Chicory’s output.

--help

Print a help message.

--debug

Produce debugging information. For other debugging options, run Chicory with the
--help option.

--default-bcel

Chicory uses the Byte Code Engineering Library (BCEL) to instrument class files.
Errors can occur if the application uses an incompatible version of BCEL. By default,
Chicory identifies and loads its copy of BCEL when multiple copies of BCEL are in
the classpath. It will also issue a warning if multiple copies of BCEL are in the
classpath and the application version is not the first one. When this option is chosen,
Chicory will simply use whatever version of BCEL is found on the classpath.

--dtrace-file=filename

Specifies the default name for the trace output (.dtrace) file. If this is not specified,
then the value of the DTRACEFILE environment variable (at the time the instrumented
program runs) is used. If that environment variable is not used, then the default is
./CLASSNAME.dtrace.

If the DTRACEAPPEND environment variable is set to any value, the .dtrace file will be
appended to instead of overwritten. Compressed data trace files may not be appended
to. In some cases you may find a single large data trace file more convenient; in other
cases, a collection of smaller data trace files may give you more control over which
subsets of runs to invoke Daikon on.

--comparability-file=filename

This option specifies a declaration file (see Section “Declarations” in Daikon Developer
Manual) that contains comparability information. This information will be incorp-
orated in the output of Chicory. Any variables not included in the comparability file
will have their comparability set so that they are comparable to all other variables of
the same type. The DynComp tool is a common source for such a file (see Section 7.2
[DynComp for Java], page 98 and Section 7.3.3 [DynComp for C/C++], page 112).
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--output-dir=directory

Write the .dtrace trace output file to the specified directory. The default is the
current directory.

--config-dir=directory

Chicory will use this location to search for configuration files. Currently, this only
includes *.pure files.

--daikon

After creating a data trace (.dtrace) file, run Daikon on it. To specify arguments to
Daikon use the --daikon-args option. Also see the --daikon-online option.

This option supplies Daikon with a single trace from one execution of your program.
By contrast to this option (and --daikon-online), if you invoke Daikon from the
command line, you can supply Daikon with as many trace files as you wish.

If the program that Chicory is tracing aborts with an error, then Chicory does not
run Daikon, but prints a message such as “Warning: Did not run Daikon because
target exited with 1 status”.

--daikon-online

This option is like --daikon, except that no .dtrace data trace file is produced.
Instead, Chicory sends trace information over a socket to Daikon, which processes
the information incrementally (“online”), as Chicory produces it.

Just like with the --daikon option, Daikon is only given a single trace from one
execution of your program.

The Kvasir front end also supports online execution, via use of (normal or named)
Linux pipes (see Section 7.3.7 [Online execution], page 124).

--daikon-args=arguments

Specifies arguments to be passed to Daikon if the --daikon or --daikon-online

options are used.

--premain=path

Specifies the absolute pathname to the ChicoryPremain.jar file. Chicory requires
this jar file in order to execute. By default Chicory looks for the jar file in the classpath
and in $DAIKONDIR/java (where DAIKONDIR is an environment variable that points
to the complete installation of Daikon).

Chicory can also use the daikon.jar file for this purpose. If it doesn’t find
ChicoryPremain.jar above, it will use daikon.jar itself (if a file named daikon.jar

appears in the classpath). If the Daikon jar file is not named daikon.jar, you can
use this switch to specify its name. For example:

--premain=C:\lib\daikon-4.1.3.jar

--heap-size=max_heap

Specifies the maximum size, in bytes, of the memory allocation pool for the target
program. Also applies to Daikon, if the --daikon command-line argument is given.
The size is specified in the same manner as the --Xmx switch to java; for example:
--heap-size=2048m.
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7.1.2 Static fields (global variables)

Chicory (Daikon’s front end for Java) outputs the values of static fields in the current
class, but not in other classes. That means that Daikon cannot report properties over
static fields in other classes, because it never sees their values. (By contrast, Kvasir (see
Section 7.3 [Kvasir], page 105) supplies the values of C/C++ global variables to Daikon.)

If you need Daikon to include all static variables when processing each class, then ask
the maintainers to add that feature to Chicory (or work with them to implement the en-
hancement). In the meanwhile, here are two workarounds.

1. Add a static field whose type is the class containing the fields of interest. You don’t
have to ever assign to the new field. A disadvantage of this approach is that it gives
you properties over the global variables as observed by each class (which might be
different).

2. At the beginning and end of each method, add a call to a dummy method that has
access to all the globals (via adding the field mentioned above). This produces a single
formula that is valid for all global variables at all times.

7.2 DynComp dynamic comparability (abstract type)
analysis for Java

The DynComp dynamic comparability analysis tool performs dynamic type inference to
group variables at each program point into comparability sets (see Section “Program point
declarations” in Daikon Developer Manual for the numeric representation format of these
sets.) All variables in each comparability set belong to the same “abstract type” of data
that the programmer likely intended to represent, which is a richer set of types than the
few basic declared types (e.g., int, float) provided by the language. Consider the example
below:

public class Year {

public static void main(String[] args) {

int year = 2005;

int winterDays = 58;

int summerDays = 307;

compute(year, winterDays, summerDays);

}

public static int compute(int yr, int d1, int d2) {

if (0 != yr % 4)

return d1 + d2;

else

return d1 + d2 + 1;

}

}

The three variables in main() all have the same Java representation type, int, but two of
them hold related quantities (numbers of days), as can be determined by the fact that they
interact when the program adds them, whereas the other contains a conceptually distinct
quantity (a year). The abstract types “day” and “year” are both represented as int, but
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DynComp can differentiate them with its dynamic analysis. For example, DynComp can
infer that winterDays and summerDays are comparable (belong to the same abstract type)
because the program adds their values together within the compute() function.

Without comparability information, Daikon attempts to find invariants over all pairs
(and sometimes triples) of variables present at every program point. This can lead to two
negative consequences: First, it may take lots of time and memory to infer all of these
invariants, especially when there are many global or derived variables present. Second,
many of those invariants are true but meaningless because they relate variables which
conceptually represent different types (e.g., an invariant such as winterDays < year is true
but meaningless because days and years are not comparable).

To use DynComp, run your program as you normally would, but replace the java com-
mand with java daikon.DynComp. For instance, if you usually run

java mypackage.MyClass arg1 arg2 arg3

then instead you would run

java daikon.DynComp mypackage.MyClass arg1 arg2 arg3

This runs your program and creates the file MyClass.decls-DynComp in the current di-
rectory. DynComp also creates MyClass.txt-cset, which contains the same information
and a further level of detail in an easier-to-read format. The .decls-DynComp file may
be passed to Chicory, as described in Section 3.1.3 [Using DynComp with Java programs],
page 10.

java daikon.Chicory --comparability-file=MyClass.decls-DynComp \

mypackage.MyClass arg1 arg2 arg3

See below for more options.

While you may run DynComp with the standard JDK, using the --no-jdk switch, you
can obtain more accurate results by using a copy of the JDK that has been instrumented
with DynComp. See Section 7.2.1 [Instrumenting the JDK with DynComp], page 101,
below, for instructions.

This is part of a sample .decls file generated by running DynComp on the example
above:

DECLARE

Year.compute(int, int, int):::ENTER

yr

int # isParam=true

int

3

d1

int # isParam=true

int

2

d2

int # isParam=true

int

2

DRAFT 1 June 2016



Chapter 7: Front ends (instrumentation) 100

DECLARE

Year.compute(int, int, int):::EXIT11

yr

int # isParam=true

int

3

d1

int # isParam=true

int

2

d2

int # isParam=true

int

2

return

int

int

2

The declaration file format is described in Section “Program point declarations” in Daikon
Developer Manual.

DynComp creates two representations of the comparability information in the files
foo.txt-cset and foo.txt-trace. In the cset file, DynComp outputs comparability sets
as sets. The above .decls output corresponds to the following in cset:

Daikon Variable sets for Year.compute(I yr, I d1, I d2) enter

[2] [daikon.chicory.ParameterInfo:d1] [daikon.chicory.ParameterInfo:d2]

[1] [daikon.chicory.ParameterInfo:yr]

Daikon Variable sets for Year.compute(I yr, I d1, I d2) exit

[3] [daikon.chicory.ParameterInfo:d1, daikon.chicory.ParameterInfo:

d2, daikon.chicory.ReturnInfo:return]

[1] [daikon.chicory.ParameterInfo:yr]

In the trace file, DynComp outputs comparability sets as trees, structured such that each
variable in the tree has interacted with its children. The lack of a parent-child relationship
between two variables in a set does not imply anything about whether they interacted. The
above .decls output corresponds to the following in trace:

Daikon Traced Tree for Year.compute(I yr, I d1, I d2) enter

daikon.chicory.ParameterInfo:d1

--daikon.chicory.ParameterInfo:d2 ()

daikon.chicory.ParameterInfo:yr

Daikon Traced Tree for Year.compute(I yr, I d1, I d2) exit
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daikon.chicory.ParameterInfo:d1

--daikon.chicory.ParameterInfo:d2 (Year:compute()-11)

--daikon.chicory.ReturnInfo:return (Year:compute()-11)

daikon.chicory.ParameterInfo yr

The file here shows that d1, d2, and the return value of the compute method are in the same
comparability set; this is correct, as they are all of the abstract type “days”. The variable
yr is in its own comparability set; it has abstract type “year”, and so is not comparable to
the other variables. In addition, the structure of the [d1, d2, return] set shows that at
some point, d1 interacted with d2, and that d2 interacted with return. The absence of a
d1 -- return edge does not imply that d1 and return never interacted directly.

In addition, non-root nodes in the trace trees can indicate a list of class names, method
names, and line numbers at which values interacted, resulting in comparability between the
preceding child node and its parent. In the above example, d1 interacted with d2 on line
11 of the compute method of the Year class.

Duplicate values in this list represent the results of separate calls to another method which
each of the relevant variables. For example, if main had calls compute(year, summerDays,

winterDays) and compute(year,schoolDays,breakDays), then for main we might see this
output:

daikon.chicory.FieldInfo:summerDays

--daikon.chicory.FieldInfo:winterDays([Year:compute()-11])

--daikon.chicory.FieldInfo:schoolDays([Year:compute()-11, Year:compute()-11])

----daikon.chicory.FieldInfo:breakDays([Year:compute()-11])

Empty lists indicate that no non-assignment interactions occurred in the series of interact-
ions connecting the two variables.

Elements of these lists are essentially parts of stack traces. The maximum number of
stack trace levels displayed is set by --trace-line-depth, which is equal to 1 by default.

For these files, DynComp also has a --abridged-vars option that replaces text like
daikon.chicory.ParameterInfo:d2 with text like Parameter d2 in the cset and trace

files. It writes this instead of daikon.chicory.ThisObjInfo:this; and return instead
of daikon.chicory.ReturnInfo:return. This option is off by default, but can be turned
on with --abridged-vars.

7.2.1 Instrumenting the JDK with DynComp

If you did not already do so when installing Daikon (see Section 2.2 [Complete installat-
ion], page 2), follow the instructions here to build an instrumented copy of the JDK. Use
the following command:

make -C $DAIKONDIR/java dcomp_rt.jar

Make sure the JAVA_HOME environment variable is set to the directory containing your
JDK. This command instruments the classes in the rt.jar file of the JDK, and creates a
new file, dcomp_rt.jar, in the java directory.

On MacOSX, versions of the JDK prior to 7 were not organized in a manner similar to
the Linux versions. Current versions of Daikon require JDK 7 (or newer); hence, this is no
longer an issue on MacOSX. The following example is typical for an install of Java 1.7 on
MacOSX:
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export JAVA_HOME=/Library/Java/JavaVirtualMachines/jdk1.7.0_45.jdk/Home

Building dcomp_rt requires 10-30 minutes to complete and uses 1024 MB of memory.
Regular progress indicators are printed to standard output.

You can ignore warnings issued during the instrumentation process, so long as the make
target itself completes normally.

If there are any methods in the JDK that DynComp is unable to instrument, their names
will be printed at the end of the instrumentation process. This is not a problem unless
your application calls one of these methods (directly or indirectly). If one of these methods
is called, a ‘NoSuchMethodException’ will be generated when the call is attempted. As of
Java 7 runtime version 1.7.0 65 all Java runtime methods are able to be instrumented.

If the instrumented JDK is in a non-standard location, use the --rt-file switch to
specify its location, or change your classpath to include it.

One final note: if you update your JDK in any way (such as a OS upgrade), you will
need to rebuild dcomp_rt.jar.

7.2.2 DynComp options

DynComp is invoked as follows:

java daikon.DynComp dyncomp-args classname args

where

java classname args

is a valid invocation of Java.

This section lists the optional command-line arguments to DynComp, which appear before
the classname on the DynComp command line.

--verbose

Print information about the classes being processed.

--debug

Dump the instrumented classes to debug/bin.

--debug-dir

The directory in which to dump instrumented class files (only if --debug is specified).
Defaults to debug in the current working directory.

--output-dir=dir

The directory in which to create output files. Defaults to the current working di-
rectory.

--decl-file=file

Output filename for .decls file suitable for input to Daikon. Defaults to target_

program.decls-DynComp.

--no-cset-file

When this switch is on, output of the cset file is suppressed.

--compare-sets-file=file

Output filename for a more easily human-readable file summarizing comparability
sets. The default behavior is to print to standard output. This switch has no effect
if --no-cset-file is specified on the command line.
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--trace-sets-file=file

Output filename for a human-readable file showing some of the interactions that
occurred. Default behavior is to not create the file.

--trace-line-depth=n

Controls size of the stack displayed in tracing the interactions that occurred. Default
behavior is to only display one element in the stack — that is, display at most the
topmost function on the stack when the interaction occurred. This switch has no
effect if --trace-sets-file is not specified, or is null.

--abridged-vars

When this switch is on, DynComp abridges the variables printed in the files sp-
ecified by --compare-sets-file and --trace-sets-file. For example, DynComp
will output ‘Field foo’ instead of ‘dyncomp.chicory.FieldInfo:MyClass.foo’. In
particular, it replaces ‘dyncomp.chicory.ReturnInfo:return’ with ‘return’ and
‘dyncomp.chicory.ThisObjInfo:this’ with ‘this’.

--ppt-select-pattern=regex

Only emit program points that match regex. Specifically, a program point is cons-
idered to match regex if the fully qualified class name, the method name, or the
program point name matches regex. The behavior of this switch is the same as in
Chicory (see Section 7.1.1.1 [Program points in Chicory output], page 93).

This option can be specified multiple times, and may be used in conjunction with
--ppt-omit-pattern. If a program point matches both a select pattern and an omit
pattern, it is omitted.

--ppt-omit-pattern=regex

Suppress program points that match regex. Specifically, a program point is considered
to match regex if the fully qualified class name, the method name, or the program
point name matches regex. The behavior of this switch is the same as in Chicory (see
Section 7.1.1.1 [Program points in Chicory output], page 93).

This option can be specified multiple times, any may be used in conjunction with
--ppt-select-pattern. If a program point matches both a select pattern and an
omit pattern, it is omitted.

--no-primitives

Don’t track primitives. When this switch is on, DynComp only tracks the comparabil-
ity of object references; primitive values are ignored. Using this switch can greatly
improve DynComp’s runtime if you are not interested in primitive values.

--no-jdk

When this switch is on, DynComp runs with an uninstrumented JDK, and the --rt-
file switch is ignored.

--rt-file

Specifies the location of the instrumented JDK (see Section 7.2.1 [Instrumenting the
JDK with DynComp], page 101). This option is rarely necessary, because if --rt-
file is not specified, DynComp will search for a file named dcomp_rt.jar along
the classpath, and in $DAIKONDIR/java. Both this file and the current classpath are
placed on the boot classpath for DynComp’s execution.
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--std-visibility

When this switch is on, DynComp traverses exactly those fields that are visible from
a given program point. For an example, see Section 7.1.1.2 [Variables in Chicory
output], page 94.

--nesting-depth=n

Depth to which to examine structure components (default 2). This parameter determ-
ines which variables the front end causes to be output at runtime. For an example,
see Section 7.1.1.2 [Variables in Chicory output], page 94.

7.2.3 Instrumentation of Object methods

DynComp is unable to directly instrument methods of the class Object, such as clone
and equals. DynComp uses a few tricks, described here in brief, to track comparability in
these methods.

Calls such as o1.equals(o2) are replaced with calls to a static method in DynComp,
dcomp_equals(o1, o2). This static method dynamically determines whether or not o1 is
an instance of a class that has been instrumented by DynComp; every such class implements
the interface DCompInstrumented. If so, it attempts to invoke the instrumented version of
the equals method for o1. If not, or if o1 has not overridden the equals method from
Object, then no instrumented version exists, so the uninstrumented version is invoked.

In either case, the references o1 and o2 are considered to be comparable. In a future
release, we will provide a command-line switch to customize this behavior.

The clone method operates in a similar manner, choosing dynamically to invoke the
instrumented method or the uninstrumented method. In the case of clone, the methods
are invoked via reflection. In either case, the object being cloned and the resulting clone are
made comparable to each other. Again, we will provide a switch to customize this behavior
in a future release.

7.2.4 Troubleshooting DynComp for Java

If DynComp crashes the JVM, then the most likely problem is that you are running
with a wrong version of the JDK. Re-instrument the JDK as described in Section 7.2.1
[Instrumenting the JDK with DynComp], page 101.

Examples of errors that you may obtain when using the wrong version of the JDK include
the following:

Error occurred during initialization of VM

java.lang.UnsatisfiedLinkError:

# A fatal error has been detected by the Java Runtime Environment:

#

# SIGSEGV

7.2.5 Known bugs and limitations

• Java reflection finds the original, uninstrumented code. DynComp will not observe
code that is called reflectively, and so DynComp’s output will not indicate interactions
in such code.
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This is relevant to frameworks such as JUnit that call code reflectively. If you want to
run tests using JUnit, then explicitly create a Suite that contains the tests you want to
run, rather than annotating methods with @Test and depending on JUnit to find them
and call them via reflection. If you are generating JUnit test suites with Randoop, then
supply the --junit-reflection-allowed=false command-line option to Randoop.

• Instrumentation of the clone() method may fail on particular invocations within
private classes in the JDK.

7.3 C/C++ front end Kvasir

Daikon’s front end for C and C++, named Kvasir, executes C and C++ programs and
creates data trace (.dtrace) files of variables and their values by examining the operation
of the binary at runtime. Kvasir is named after the Norse god of knowledge and beet juice.
It is built upon the Fjalar dynamic analysis framework for C and C++ programs (available
at http://pag.csail.mit.edu/fjalar/, but already included in the Daikon distribution).

To use Kvasir, first compile your program using the DWARF-2 debugging format (e.g.,
supply the -gdwarf-2 option to gcc) and without optimizations (e.g., supply the -O0 option
to gcc). Then, prefix your command line by kvasir-dtrace. For example, if you normally
run your program with the command

./program -option input.file

then instead use the command

kvasir-dtrace ./program -option input.file

to run your program and create a data trace file daikon-output/program.dtrace, which
can be fed as input into Daikon. You can perform this step multiple times to create multiple
data trace files for Daikon. You can also run Daikon without creating an intermediate data
trace file; see Section 7.3.7 [Online execution], page 124.

For information about installing Kvasir, see Section 7.3.8 [Installing Kvasir], page 125.
Kvasir only works under Linux running on an x86 or x86-64 processor; for full details,
see Section 7.3.9 [Kvasir limitations], page 126. For information about how to create an in-
strumenter for C that works on non-Linux or non-x86 platforms, see Section “Instrumenting
C programs” in Daikon Developer Manual.

7.3.1 Using Kvasir

Before using Kvasir, you must compile your program compile and link your program
normally, with two exceptions:

• Do not use optimization. Remove any optimization flags, such as -O or -O2, and any
flags that affect calling conventions, such as -fomit-frame-pointer.

• Include debugging information, by supplying the -g flag. The debugging information
must be in the DWARF-2 format. DWARF-2 is the default format for debugging
information in GCC 3 and later, and otherwise is produced by supplying the -gdwarf-2
command line option.

In the second step of using Kvasir, run your program as you normally would, but prepend
the command kvasir-dtrace to the beginning. For instance, if you normally run your
program with the command
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./myprogram -option input.file

just say

kvasir-dtrace ./myprogram -option input.file

As well as running your program (more slowly than usual), this command also creates a
directory daikon-output in the current directory containing a program.dtrace file suitable
as input to Daikon.

Kvasir’s first argument, the program name, should be given as a pathname, as shown
above. If you usually just give a program name that is not in the current directory but is
found in your path, you may need to modify your command to specify a pathname. For
example:

kvasir-dtrace `which myprogram` -option input.file

You may supply options to Kvasir before the argument that is the name of your program
(see Section 7.3.2 [Kvasir options], page 106).

7.3.2 Kvasir options

To see a complete list of options, run this command: kvasir-dtrace --help

Output file format:

--decls-file=filename

Write the .decls file listing the names of functions and variables (called declarations)
to the specified file name. This forces Kvasir to generate separate .decls and .dtrace

files instead of outputting everything to the .dtrace file, which is the default behavior.
If only a .dtrace file is created (default behavior), then it contains both variable
declarations and a trace of values. If separate .decls and .dtrace files are created,
then the .decls file contains declarations and the .dtrace file contains the trace of
values.

--decls-only

Exit after writing the .decls file; don’t run the program or generate trace informat-
ion. Since the .decls file is the same for any run of a program, it can be generated
once and then reused on later runs, as long as no new program points are added and
each program point has the same set of variables.

--dtrace-file=filename

Write the .dtrace trace file to the specified file name. The default is
daikon-output/programname.dtrace, where programname is the name of the
program. A filename of - may be used to specify the standard output; in this case,
the regular standard output of the program will be redirected back to the terminal
(/dev/tty), to avoid intermixing it with the trace output. If the given filename ends
in .gz, then --dtrace-gzip is enabled and the .dtrace file will be compressed.

--dtrace-no-decs

By default, the .dtrace file contains both a list of variable declarations followed by a
trace of variable values (see Section “File formats” in Daikon Developer Manual). If
this option is used, then variable declarations are not outputted in the .dtrace file.
This option is equivalent to --decls-file=/dev/null, except that it runs faster.
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This is useful when you want to generate one copy of the declarations in the .decls
file using --decls-only, generate many .dtrace files from different program runs,
and then feed 1 .decls and several .dtrace files into Daikon.

--dtrace-append

Append new trace information to the end of an existing .dtrace file. The default
is to overwrite a preexisting .dtrace file. When this option is used, no declaration
information is written because it is assumed that the existing .dtrace file already
contains all declarations (Daikon does not accept duplicate declarations).

--dtrace-gzip

Compress trace information with the gzip program before writing it to the .dtrace
file. You must have the gzip program available.

--output-fifo

Create the output .dtrace file as a FIFO (also known as a named pipe). Kvasir will
then open first the .decls FIFO and then the .dtrace FIFO, blocking until another
program (such as Daikon) reads from them. Using FIFO files for the output of Kvasir
avoids the need for large trace files, but FIFO files are not supported by some file
systems, including the Andrew File System (AFS).

--program-stdout=filename

--program-stderr=filename

Redirect the standard output (respectively, standard error) stream of the program
being traced to the specified path. By default, the standard output and standard
error streams will be left pointing to the same locations specified by the shell, except
that if --dtrace-file=- is specified, then the default behavior is as if --program-
stdout=/dev/tty were specified, since mixing the program’s output and Kvasir’s
trace output is not advisable. If the same filename is given for both options, the
streams will be interleaved in the same way as if by the Bourne shell construction
2>&1.

Also, as in the shell, filename can be an ampersand followed by an integer, to redirect
to a numbered file descriptor. For instance, to redirect the program’s standard output
and error, and Kvasir’s standard error, to a single file, you can say --program-

stdout=’&2’ --program-stderr=’&2’ 2>filename.

Selective program point and variable tracing:

--ppt-list-file=filename

--var-list-file=filename

Trace only the program points (respectively, variables) listed in the given file. Other
program points (respectively variables) will be omitted from the .decls and .dtrace

files. A convenient way to produce such files is by editing the output produced by
the --dump-ppt-file (respectively, --dump-var-file) option described below (see
Section 7.3.4 [Tracing only part of a program], page 114).

--dump-ppt-file=filename

--dump-var-file=filename

Print a list of all the program points (respectively all the variables) in the program to
the specified file. An edited version of this file can then be used with the --ppt-list-

DRAFT 1 June 2016



Chapter 7: Front ends (instrumentation) 108

file (respectively --var-list-file) option (see Section 7.3.4 [Tracing only part of
a program], page 114). Note: Do not use these options with the --with-dyncomp

option because the behavior is undefined. Running Kvasir with these options will
initialize but not actually execute the target program, so the dynamic comparability
analysis cannot be performed in the first place.

--ignore-globals

Omit any global or static variables from the .decls and .dtrace files. Leaving these
out can significantly improve Kvasir and Daikon’s performance, at the expense of
missing properties involving them. The default is to generate trace information for
global and static variables.

--ignore-static-vars

Omit any static variables but generate trace information for global variables in the
.decls and .dtrace files.

--all-static-vars

Output all static variables at all program points in the .decls and .dtrace files. By
default, file-static variables are only outputted at program points for functions that
are defined in the same file (compilation unit) as the variable, and static variables
declared within a particular function are only outputted at program points for that
function. These heuristics decrease clutter in the output without greatly reducing
precision because functions have no easy way of modifying variables that are not in-
scope, so it is often not useful to output those variables. This option turns off these
heuristics and always outputs static variables at all program points.

Other options affecting the amount of output Kvasir produces:

--object-ppts

Enables printing of object program points for C/C++ structs and C++ classes. See
Section 5.2 [Program points], page 25 for more information.

--flatten-arrays

This option forces the flattening of statically-sized arrays into separate variables, one
for each element. For example, an array foo of size 3 would be flattened into 3
variables: foo[0], foo[1], foo[2]. By default, Kvasir flattens statically-sized arrays
only after it has already exhausted the one level of sequences that Daikon allows in
the .dtrace output format (e.g. an array of structs where each struct contains a
statically-sized array).

--array-length-limit=N

Only visit at most the first N elements of all arrays. This can improve performance at
the expense of losing coverage; it is often useful for tracing selected parts of programs
that use extremely large arrays or memory buffers.

--output-struct-vars

This option forces Kvasir to output .decls and .dtrace entries for struct variables.
By default, Kvasir ignores struct variables because there is really no value that can
be meaningfully associated with these variables. However, some tools require struct
variables to be outputted, so we have included this option. Struct variables are
denoted by a ‘# isStruct=true’ annotation in their declarations.
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--nesting-depth=N

For recursively-defined structures (structs or classes with members that are structs
or classes or pointers to structs or classes of any type), N (an integer between 0 and
100) specifies approximately how many levels of pointers to dereference. This is useful
for controlling the output of complex data structures with many references to other
structures. The default is 2.

--struct-depth=N

For recursively-defined structures (structs or classes with members that are pointers
to the same type of struct or class), N (an integer between 0 and 100) specifies
approximately how many levels of pointers to dereference. This is useful for controlling
the output of linked lists and trees. The default is 4. If you are trying to traverse deep
into data structures, try adjusting the --struct-depth and --total-depth options
until Kvasir traverses deep enough to reach the desired variables.

Section 7.3.5 [Pointer type disambiguation], page 117:

--disambig-file=filename

Specifies the name of the pointer type disambiguation file (see Section 7.3.5 [Pointer
type disambiguation], page 117). If this file exists, Kvasir uses it to make decisions
about how to output the referents of pointer variables. If the file does not exist, then
Kvasir creates it. This file may then be edited and used on subsequent runs. This
option initializes but does not fully execute the target program (unless it is run with
the --smart-disambig option).

--disambig

Tells Kvasir to create or read pointer type disambiguation (see Section 7.3.5 [Pointer
type disambiguation], page 117) with the default filename, which is myprog.disambig
in the same directory as the target program, where myprog is the name of the target
program. This is equivalent to --disambig-file=myprog.disambig.

--smart-disambig

This option should be used in addition to either the --disambig or --disambig-file
options (it does nothing by itself). If the .disambig file specified by the option does
not exist, then Kvasir executes the target program, observes whether each pointer
refers to either one element or an array of elements, and creates a disambiguation file
that contains suggestions for the disambiguation types of each pointer variable. This
potentially provides more accuracy than using either the --disambig or --disambig-
file options alone, but at the expense of a longer run time. (If the .disambig file
already exists, then this option provides no extra functionality.)

--func-disambig-ptrs

By default, Kvasir treats all pointers as arrays when outputting their contents. This
option forces Kvasir to treat function parameters and return values that are pointers
as pointing to single values. However, all pointers nested inside of data structures
pointed-to by parameters and return values are still treated as arrays. This is useful
for outputting richer data information for functions that pass parameters or return
values via pointers, which happens often in practice.
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--disambig-ptrs

By default, Kvasir treats all pointers as arrays when outputting their contents. This
option forces Kvasir to treat all pointers as pointing to single values. This is useful
when tracing nested structures with lots of pointer fields which all refer to one element.

Section 7.3.3 [DynComp for C/C++], page 112:

--with-dyncomp

Run Kvasir with the DynComp dynamic comparability analysis tool to determine
which variables have the same abstract type. Variable comparability information
can improve the performance of Daikon and allow it to generate a more focused and
relevant set of invariants. Because it is not available until the end of execution,
comparability information is always written to a separate .decls file (in the format
specified in the Section “Program point declarations” in Daikon Developer Manual),
as if the --decls-file option had been specified (--decls-file can still be used to
control the name of the file). This file must be provided to Daikon along with the
.dtrace file. This option may also be used with --decls-only to only generate a
.decls file without a .dtrace.

--dyncomp-dataflow-only

When DynComp is operating in this mode, no binary operations qualify as interact-
ions between values. Thus, DynComp only tracks dataflow.

--dyncomp-dataflow-comp

When DynComp is operating in this mode, the only binary operations that qualify
as interactions are comparisons between values (e.g., x <= y or x != y).

--dyncomp-units

When DynComp is operating in this mode, the only binary operations that qualify as
interactions are comparisons, addition, subtraction. This ensures that the variables
that DynComp groups together into one set all have the same units (e.g., physics
units).

--dyncomp-fast-mode

This option applies an approximation for handling literal values which greatly speeds
up the performance of DynComp and drastically lowers its memory usage, but at
the expense of a slight loss in precision of the generated comparability sets. If you
cannot get DynComp to successfully run on a large program, even after tweaking
--gc-num-tags, try turning on this option.

--dyncomp-detailed-mode

This option runs a more detailed (but more time- and space-intensive) algorithm for
tracking variable comparability. It takes O(n^2) time and space, whereas the default
algorithm takes roughly O(n) time and space. However, it can produce more precise
results. Despite its name, this mode can be used together with --dyncomp-fast-mode

to run the more precise algorithm but still use an approximation for handling literal
values. (This mode is still experimental and not well-tested yet.)

--separate-entry-exit-comp

The default behavior for DynComp is to generate the same comparability numbers
for Daikon variables at each pair of function entrance and exit program points. If this
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option is used, then DynComp keeps track of comparability separately for function
entrances and exits, which can lead to more accurate results, but sometimes generates
output .decls files that Daikon cannot accept.

--no-dyncomp-gc

By default, DynComp runs with a garbage collector for the tag metadata that it uses,
but this can cause your program to slow down if it runs too often. This option turns
off the garbage collector. This is not recommended for long program runs, because
without the garbage collector, it will likely run out of memory.

--gc-num-tags=N

The DynComp garbage collector runs once after every 10,000,000 tags have been
assigned. This option tells the garbage collector to run once after every N tags
have been assigned. Making the value of N larger allows your program to run faster
(because the garbage collector runs less frequently), but may cause your program to
run out of memory as well. Making the value of N too small may cause your program
to never terminate if N is smaller than the total number of tags that your program
uses in steady state. You will probably need to experiment with tweaking this value
in order to get DynComp to work properly.

Debugging:

--xml-output-file=filename

Outputs a representation of data structures, functions, and variables in the target
program to an XML file in order to aid in debugging. These are all the entities that
Kvasir tracks for a particular run of a target program, so if you do not see an entity
in this XML file, then you should either adjust command-line options or contact us
with a bug report.

--with-gdb

This pauses the program’s execution in an infinite loop during initialization. You
can attach a debugger such as gdb to the running process by running gdb on
inst/lib/valgrind/x86-linux/fjalar under the Kvasir directory and using the
attach command.

--kvasir-debug

--fjalar-debug

--dyncomp-debug

Enable progress messages meant for debugging problems with Kvasir, Fjalar, or
DynComp. By default, they are disabled. This option is intended mainly for Kvasir’s
developers.

--no-path-compression

--no-var-leader

--no-val-leader

These disable optimizations to DynComp’s abstract type inference implementation.
These are disabled by default. These options are intended mainly for DynComp
developers.
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--dyncomp-trace

--dyncomp-trace-merge

-- dyncomp-print-inc

Enables trace messages to be output to stderr. These are disabled by default. These
options are intended mainly for DynComp developers.

7.3.3 DynComp dynamic comparability (abstract type) analysis
for C/C++

Kvasir comes with the DynComp dynamic comparability analysis tool, which performs
dynamic type inference to group variables at each program point into comparability sets.
(See Section “Program point declarations” in Daikon Developer Manual, for the numeric
representation format of these sets.) All variables in each comparability set belong to the
same “abstract type” of data that the programmer likely intended to represent, which is
a richer set of types than the few basic declared types (e.g., int, float) provided by the
language. Consider the example below:

int main() {

int year = 2005;

int winterDays = 58;

int summerDays = 307;

compute(year, winterDays, summerDays);

}

int compute(int yr, int d1, int d2) {

if (yr % 4)

return d1 + d2;

else

return d1 + d2 + 1;

}

The three variables in main() all have the same C representation type, int, but two of
them hold related quantities (numbers of days), as can be determined by the fact that they
interact when the program adds them, whereas the other contains a conceptually distinct
quantity (a year). The abstract types “day” and “year” are both represented as int, but
DynComp can differentiate them with its dynamic analysis. For example, DynComp can
infer that winterDays and summerDays are comparable (belong to the same abstract type)
because the program adds their values together within the compute() function.

Without comparability information, Daikon attempts to find invariants over all pairs
(and sometimes triples) of variables present at every program point. This can lead to two
negative consequences: First, it may take lots of time and memory to infer all of these
invariants, especially when there are many global or derived variables present. Second,
many of those invariants are true but meaningless because they relate variables which
conceptually represent different types (e.g., an invariant such as winterDays < year is true
but meaningless because days and years are not comparable).

Use the --with-dyncomp option to run Kvasir with DynComp to generate a .decls file
with comparability information along with the usual value trace in the .dtrace file. Using
--decls-only will only generate the .decls file without the extra slowdown of writing
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the .dtrace file to disk (however, because DynComp must execute the entire program to
perform its analysis, the only time saved is I/O time). Other DynComp options are listed in
the Section 7.3.2 [Kvasir options], page 106 section. Running Kvasir with DynComp takes
more memory and longer time than running Kvasir alone, but remember that DynComp
only needs to be run once to generate a .decls file with comparability information. That
one file can be passed into Daikon along with many different .dtrace files generated during
subsequent Kvasir runs without DynComp.

Here is part of the .decls file generated by running Kvasir with DynComp on the above
example:

DECLARE

..compute():::ENTER

yr

int # isParam=true

int

1

d1

int # isParam=true

int

2

d2

int # isParam=true

int

2

DECLARE

..compute():::EXIT0

yr

int # isParam=true

int

1

d1

int # isParam=true

int

2

d2

int # isParam=true

int

2

return

int

int

2

The abstract type of “year” (and its corresponding comparability set) is represented by
the number 1 while the abstract type of “day” is represented by the number 2. DynComp
places two variables in the same comparability set when their values interact via program
operations such as arithmetic or assignment. Because the parameters d1 and d2 were added
together, DynComp inferred that those variables were somehow related and put them in
the same comparability set. The return value is also related to d1 and d2 because it is the
result of the addition operation. Notice that yr never interacts with any other variables,
so DynComp places it into its own comparability set. With this comparability information,
Daikon will never attempt to find invariants between yr and d1/d2, which both saves time
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and memory and eliminates meaningless invariants (the savings are minuscule in this trivial
example, but they can be rather dramatic in larger examples).

7.3.4 Tracing only part of a program

When Kvasir is run on a target program of significant size, often times too much output
is generated, which causes an enormous performance slowdown of both Kvasir outputting
the trace file and also Daikon trying to process the trace file. It is often desirable to only
trace a specific portion of the target program, program points and variables that are of
interest for a particular invariant detection application. For instance, one may only be
interested in tracking changes in a particular global data structure during calls to a specific
set of functions (program points), and thus have no need for information about any other
program points or variables in the trace file. The --ppt-list-file and --var-list-file

options can be used to achieve such selective tracing.

The program point list file (abbreviated as ppt-list-file) consists of a newline-
separated list of names of functions that the user wants Kvasir to trace. Every name
corresponds to both the entrance (:::ENTER) and exit (:::EXIT) program points for that
function and is printed out in the exact same format that Kvasir uses for that function in
the trace file. (See Section 7.3.1 [Using Kvasir], page 105, for the program point naming
scheme.) Here is an example of a ppt-list-file:

FunctionNamesTest.cpp.staticFoo(int, int)

..firstFileFunction(int)

..main()

second_file.cpp.staticFoo(int, int)

..secondFileFunction()

It is very important to follow this format in the ppt-list-file because Kvasir performs
string comparisons to determine which program points to trace. Thus, it is often easier to
have Kvasir generate a ppt-list-file file that contains a list of all program points in a
target program by using the --dump-ppt-file option, and then either comment out (by
using the ‘#’ comment character at the beginning of the line) or delete lines in that file for
program points not to be traced or create a new ppt-list-file using the names in the
Kvasir-generated file. This prevents typos and the tedium of manually typing up program
point names. In fact, the ppt-list-file presented in the above example was generated
from a C++ test program named FunctionNamesTest by using the following command:

kvasir-dtrace --dump-ppt-file=FunctionNamesTest.ppts \

./FunctionNamesTest

That file represents all the program points that Kvasir would normally trace. If the user
wanted to only trace the main() function, he could comment out all other lines by placing
a single ‘#’ character at the beginning of each line to be commented out, as demonstrated
here:

#FunctionNamesTest.cpp.staticFoo(int, int)

#..firstFileFunction(int)

..main()

#second_file.cpp.staticFoo(int, int)

#..secondFileFunction()

DRAFT 1 June 2016



Chapter 7: Front ends (instrumentation) 115

When running Kvasir with the --ppt-list-file option using this as the ppt-list-

file, Kvasir only stops the execution of the target program at the entrance and exit of
main() in order to output values to the .dtrace file. In order to reduce the file size,
when running Kvasir with the --ppt-list-file option, the .decls file only contains
program point declarations for those listed in the ppt-list-file (..main():::ENTER and
..main():::EXIT in this case) because no other declarations are necessary.

The variable list file (abbreviated as var-list-file) contains all of the variables that
the user wants Kvasir to output. There is one section for global variables and a section
for variables associated with each function (formal parameters and return values). Again,
the best way to create a var-list-file is to have Kvasir generate a file with all variables
using the --dump-var-file option and then modifying that file for one’s particular needs
by either deleting or commenting out lines (again using the ‘#’ comment character). For
example, executing

kvasir-dtrace --dump-var-file=FunctionNamesTest.vars \

./FunctionNamesTest

will generate the following var-list-file named FunctionNamesTest.vars:

----SECTION----

globals

/globalIntArray

/globalIntArray[]

/anotherGlobalIntArray

/anotherGlobalIntArray[]

----SECTION----

FunctionNamesTest.cpp.staticFoo()

x

y

----SECTION----

..firstFileFunction(int)

blah

----SECTION----

..main()

argc

argv

argv[]

return

----SECTION----

second_file.cpp.staticFoo()
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x

y

----SECTION----

..secondFileFunction()

The file format is straightforward. Each section is marked by a special string
‘----SECTION----’ on a line by itself followed immediately by a line that either denotes
the program point name (formatted like how it appears in the .decls and .dtrace

files) or the special string ‘globals’. This is followed by a newline-delimited list of all
variables to be outputted for that particular program point. Global variables listed in the
globals section are outputted for all program points. Additional global variables to be
outputted for a particular program point can be specified in the corresponding section
entry. For clarity, one or more blank lines should separate neighboring sections, although
the ‘----SECTION----’ string literal on a line by itself is the only required delimiter. If an
entire section is missing, then no variables for that program point (or no global variables,
if it is the special globals section) are traced.

The variables listed in this file are written exactly as they appear in the .decls and
.dtrace file. (See Section 7.3.1 [Using Kvasir], page 105, for the variable naming scheme.)
In the program that generated the output for the above example, int* globalIntArray is
a global integer pointer variable. For that variable, Kvasir generates two Daikon variables:
/globalIntArray to represent the hashcode pointer value, and /globalIntArray[] to
represent the array of integers referred-to by that pointer. The latter is a derived-variable
that can be thought of as the child of /globalIntArray. If the entry for /globalIntArray
is commented-out or missing, then Kvasir will not output any values for /globalIntArray
or for any of its children, which in this case is /globalIntArray[]. If a struct or struct
pointer variable is commented-out or missing, then none of its members are traced. Thus,
a general rule about variable entries in the var-list-file is that if a parent variable is
not present, then neither it nor its children are traced.

record

record->entries[1]

record->entries[1]->list

record->entries[1]->list->head

record->entries[1]->list->head->magic

For example, if you wanted to trace the value of the magic field nested deep within
several layers of structs and arrays, it would not be enough to merely list this variable in
the var-list-file. You would need to list all variables that are the parents of this one, as
indicated by their names. This can be easily accomplished by creating a file with --dump-

var-file and cutting out variable entries, taking care to not cut out entries that are the
parents of entries that you want to trace.

In order to limit both the number of program points traced as well as the variables
traced at those program points, the user can run Kvasir with both the --ppt-list-file

and --var-list-file options with the appropriate ppt-list-file and var-list-file,
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respectively. The var-list-file only needs to contain a section for global variables and
sections for all program points to be traced because variable listings for program points not
to be traced are irrelevant (their presence in the var-list-file does not affect correctness
but does cause an unnecessary performance and memory inefficiency).

If the --dump-var-file option is used in conjunction with the --ppt-list-file option,
then the only sections generated in the var-list-file will be the global section and sections
for all program points explicitly mentioned in the ppt-list-file. This is helpful for
generating a smaller var-list-file for use with an already-existent ppt-list-file.

7.3.5 Pointer type disambiguation

Kvasir permits users (or external analyses) to specify whether pointers refer to arrays or
to single values, and optionally, to specify the type of a pointer (see Section 7.3.5.1 [Pointer
type coercion], page 118). For example, in

void sum(int* array, int* result) { ... } // definition of "sum"

...

int a[40];

int total;

...

sum(a, &total); // use of "sum"

the first pointer parameter refers to an array while the second refers to a single value. Kvasir
(and Daikon) should treat these values differently. For instance, *array is better printed
as array[], an array of integers, and result[] isn’t a sensible array at all, even though
in C result[0] is semantically identical to *result. By default, Kvasir treats all pointers
as referencing arrays. For instance, it would print result[] rather than result[0] and
would indicate that the length of array result[] is always 1. In order to improve the
formatting of Daikon’s output (and to speed it up), you can indicate to Kvasir that certain
pointers refer to single elements rather than to arrays. For an example, see Section 7.3.5.2
[Pointer type disambiguation example], page 119. For a list of command-line options that
are related to pointer type disambiguation, see [Pointer type disambiguation command-line
arguments], page 109.

Information about whether each pointer refers to an array or a single element can be
specified in a .disambig file that resides in the same directory as the target program (by
default). The --disambig option instructs Kvasir to read this file if it exists. (If it does
not exist, Kvasir produces the file automatically and, if invoked along with the --smart-

disambig option, heuristically infers whether each pointer variable refers to single or mul-
tiple elements. Thus, users can edit this file for use on subsequent runs rather than having
to create it from scratch.) The .disambig file lists all the program points and user-defined
types, and under each, lists certain types of variables along with their custom disambiguat-
ion types as shown below. The list of disambiguation options is:

1. For variables of type char and unsigned char:

1. ’I’: an integer, signed for char and unsigned for unsigned char. (Default)

2. ’C’: a single character, output as a string.

2. For pointers to (or arrays of) char and unsigned char:

1. ’S’: a string, possibly zero-terminated. (Default)
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2. ’C’: a single character, output as a string.

3. ’A’: an array of integers.

4. ’P’: a single integer.

3. For pointers to (or arrays of) all other variable types (if invoked along with --smart-

disambig, Kvasir automatically infers a default ’A’ or ’P’ for each variable during the
generation of a .disambig file):

1. ’A’: an array. (Default) (For an array of structs, an array will be output for each
scalar field of the struct. Aggregate children (arrays, other structs) will not be
output.)

2. ’P’: a pointer to a single element. (For a pointer to a struct, each field will be
output as a single instance, and child aggregate types will be output recursively.
This extra information obtained from struct pointers is a powerful consequence
of pointer type disambiguation. This will be the default if the --disambig-ptrs

option is used.)

The .disambig file that Kvasir creates contains a section for each function, which can be
used to disambiguate parameter variables visible at that function’s entrance program point
and parameter and return value variables visible at that function’s exit program point. It
also contains a section for every user-defined struct/class, which can be used to disambiguate
member variables of that struct/class. Disambiguation information entered here will apply
to all instances of a struct/class of that type, at all program points. There is also a section
called “globals”, which disambiguates global variables which are output at every program
point. The entries in the .disambig file may appear in any order, and whole entries or
individual variables within a section may be omitted. In this case, Kvasir will retain their
default values.

7.3.5.1 Pointer type coercion

In addition to specifying whether a particular pointer refers to one element or to an array
of elements, the user can also specify what type of data a pointer refers to. This type
coercion acts like an explicit type cast in C, except that it only works on struct/class types
and not on primitive types. This feature is useful for traversing inside of data structures
with generic void* pointer fields. Another use is to cast a pointer from one that refers to a
“super class” to one that refers to a “sub class”. This structural equivalence pattern is often
found in C programs that emulate object orientation. To coerce a pointer to a particular
type, simply write the name of the struct type after the disambiguation letter (e.g., A, P,
S, C, I) in the .disambig file:

----SECTION----

function: ..view_foo_and_bar()

f

P foo

b

P bar

Without the type coercion, Kvasir cannot print out anything except for a hashcode for the
two void* parameters of this function:

void view_foo_and_bar(void* f, void* b);
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With type coercion, though, Kvasir treats f as a foo* and b as bar* and can traverse inside
of them. Of course, if those are not the true runtime types of the variables, then Kvasir’s
output will be meaningless.

Due to the use of typedefs, there may be more than one name for a particular struct
type. The exact name that you need to write in the .disambig file is the one that appears
in that file after the usertype prefix. Note that if a struct does not have any pointer
fields, then there will be no usertype section for it in the .disambig file. In that case, try
different names for the struct if necessary until Kvasir accepts the name (names are all one
word long; you will never have to write struct foo). There should only be at most a few
choices to make. If the coercion if successful, Kvasir prints out a message in the following
form while it is processing the .disambig file:

.disambig: Coerced variable f into type ’foo’

.disambig: Coerced variable b into type ’bar’

One more caveat about type coercion is that you can currently only coerce pointers into
types that at least one variable in the program (e.g., globals, function parameters, struct
fields) belongs to. It is not enough to merely declare a struct type in your source code; you
must have a variable of that type somewhere in your program. This is a limitation of the
current implementation, but it should not matter most of the time because programs rarely
have struct declarations with no variables that belong to that type. If you encounter this
problem, you can simply create a global variable of a certain type to make type coercion
work.

7.3.5.2 Pointer type disambiguation example

This example demonstrates the power of pointer type disambiguation in creating more
accurate Daikon output. Consider this file:

struct record {

char* name; // Initialize to: "Daikon User"

int numbers[5]; // Initialize to: {5, 4, 3, 2, 1}

};

void foo(struct record* bar) {

int i;

for (i = 0; i < 5; i++) {

bar->numbers[i] = (5 - i);

}

}

int main() {

char* myName = "Daikon User";

struct record baz;

baz.name = myName;

foo(&baz);

}

In foo(), bar is a pointer to a record struct. By inspection, it is evident that in this
program, bar only refers to one element: &baz within main. However, by default, Kvasir
assumes that bar is an array of record structs since a C pointer contains no informat-
ion about how many elements it refers to. Because Kvasir must output bar as an array
and bar->numbers is an array of integers, it “flattens” bar->numbers into 5 separate ar-
rays named bar->numbers[0] through bar->numbers[4] and creates fairly verbose output.
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This is a direct consequence of the fact that Daikon can only handle one layer of sequences
(it cannot handle arrays within arrays, i.e., multidimensional arrays).

Here is part of the Daikon output for this program:

======================================================================

..foo():::ENTER

bar has only one value

bar[].name == [Daikon User]

bar[].name elements == "Daikon User"

======================================================================

..foo():::EXIT

size(bar[]).numbers[0] == size(bar[]).numbers[0][0]

size(bar[]).numbers[0] == size(bar[]).numbers[1]

size(bar[]).numbers[0] == size(bar[]).numbers[1][0]

size(bar[]).numbers[0] == size(bar[]).numbers[2]

size(bar[]).numbers[0] == size(bar[]).numbers[2][0]

size(bar[]).numbers[0] == size(bar[]).numbers[3]

size(bar[]).numbers[0] == size(bar[]).numbers[3][0]

size(bar[]).numbers[0] == size(bar[]).numbers[4]

size(bar[]).numbers[0] == size(bar[]).numbers[4][0]

bar[].name == [Daikon User]

bar[].name elements == "Daikon User"

bar[].numbers[0] contains no nulls and has only one value, of length 1

bar[].numbers[0] elements has only one value

bar[].numbers[0][0] == [5]

bar[].numbers[0][0] elements == 5

bar[].numbers[1] contains no nulls and has only one value, of length 1

bar[].numbers[1] elements has only one value

bar[].numbers[1][0] == [4]

bar[].numbers[1][0] elements == 4

bar[].numbers[2] contains no nulls and has only one value, of length 1

bar[].numbers[2] elements has only one value

bar[].numbers[2][0] == [3]

bar[].numbers[2][0] elements == 3

bar[].numbers[3] contains no nulls and has only one value, of length 1

bar[].numbers[3] elements has only one value

bar[].numbers[3][0] == [2]

bar[].numbers[3][0] elements == 2

bar[].numbers[4] contains no nulls and has only one value, of length 1

bar[].numbers[4] elements has only one value

bar[].numbers[4][0] == [1]

bar[].numbers[4][0] elements == 1

size(bar[]).numbers[0] == 1

bar[].numbers[4][0] elements == size(bar[]).numbers[0]

size(bar[]).numbers[0] in bar[].numbers[4][0]

This is a bit verbose due to the fact that Kvasir treats bar like an array by default when
it actually only points to one element. However, by running Kvasir with the --disambig

option, we create the myprog.disambig file, which we can then edit and feed back to Kvasir
to change how the pointer is treated. (We run Kvasir twice on the same program, but we
edit the .disambig file in between the runs.)

kvasir-dtrace ...options... --disambig --smart-disambig myprog

This creates the myprog.disambig file. It contains, at the top:

----SECTION----

function: ..foo()
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bar

P

This means that at the program points corresponding to the entry and exit of foo(), the
variable bar is treated as a ‘Pointer’ type. Since we have used the --smart-disambig

option, Kvasir automatically inferred Pointer instead of Array for bar because it observed
that bar only pointed to one element during the execution of the target program which
generated the .disambig file. This heuristic allows users to use .disambig files more
effectively with less manual editing. Without --smart-disambig, Kvasir does not execute
the program to make such inferences, which allows .disambig files to be generated faster,
but leaves the default disambiguation types for all entries (in this case, bar would have the
default array type of ’A’).

Then, running Kvasir again with the --disambig option causes Kvasir to open the exist-
ing myprog.disambig file, read the definitions, and alter the output accordingly:

kvasir-dtrace ...options... --disambig myprog

This tells Kvasir to output bar as a ‘Pointer’ to a single element, which in turn causes
Daikon to generate a much more concise set of invariants. Notice that bar->numbers no
longer has to be “flattened” because bar is now a pointer to one struct, so Daikon can
recognize bar->numbers as a single-dimensional array (Daikon uses a Java-like syntax,
replacing the arrow ‘->’ symbol with a dot, so it actually outputs bar.numbers).

======================================================================

..foo():::ENTER

bar has only one value

bar.name == "Daikon User"

======================================================================

..foo():::EXIT

bar.name == "Daikon User"

bar.numbers has only one value

bar.numbers[] == [5, 4, 3, 2, 1]

size(bar.numbers[]) == 5

bar.name == orig(bar.name)

size(bar.numbers[]) in bar.numbers[]

size(bar.numbers[])-1 in bar.numbers[]

7.3.5.3 Using pointer type disambiguation with partial program
tracing

It is possible to use pointer type disambiguation while only tracing selected program
points and/or variables in a target program, combining the functionality described in the
Section 7.3.5 [Pointer type disambiguation], page 117 and Section 7.3.4 [Tracing only part of
a program], page 114 sections. This section describes the interaction of the ppt-list-file,
var-list-file, and .disambig files.

The interaction between selective program point tracing (via the ppt-list-file) and
pointer type disambiguation is fairly straightforward: If the user creates a .disambig file
while running Kvasir with a ppt-list-file that only specifies certain program points, the
generated .disambig file will only contain sections for those program points (as well as the
global section and sections for each struct type). If the user reads in a .disambig file while
running Kvasir with a ppt-list-file, then disambiguation information is applied for all
variables at the program points to be traced. This can be much faster and generate a much
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smaller disambiguation file, one that only contains information about the program points
of interest.

The interaction between selective variable tracing (via the var-list-file) and pointer
type disambiguation is a bit more complicated. This is because the var-list-file lists
variables as they appear in the .decls and .dtrace files, but using a .disambig file can
actually change the way that variable names are printed out in the .decls and .dtrace

files. For example, consider the test program from the Section 7.3.5.2 [Pointer type disam-
biguation example], page 119. The struct record* bar parameter of foo() is treated like
an array by default. Hence, the .decls, .dtrace, and var-list-file will list the following
variables derived from this parameter:

----SECTION----

..foo()

bar

bar[].name

bar[].numbers[0]

bar[].numbers[0][0]

bar[].numbers[1]

bar[].numbers[1][0]

bar[].numbers[2]

bar[].numbers[2][0]

bar[].numbers[3]

bar[].numbers[3][0]

bar[].numbers[4]

bar[].numbers[4][0]

However, if we use a disambiguation file to denote bar as a pointer to a single element, then
the .decls and .dtrace files will instead list the following variables:

----SECTION----

..foo()

bar

bar->name

bar->numbers

bar->numbers[]

Notice how the latter variable list is more compact and reflects the fact that bar is a
pointer to a single struct. Thus, the flattening of the numbers[5] static array member
variable is no longer necessary (it was necessary without disambiguation because Daikon
does not support nested arrays of arrays, which can occur if bar were itself an array since
numbers[5] is already an array).

Notice that, with the exception of the base variable bar, all other variable names differ
when running without and with disambiguation. Thus, if you used a var-list-file gen-
erated on a run without the disambiguation information while running Kvasir with the
disambiguation information, the names will not match up at all, and you will not get the
proper selective variable tracing behavior.

The suggested way to use selective variable tracing with pointer type disambiguation is
as follows:
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1. First create the proper .disambig file by using either --disambig or --disambig-file.
You can use --ppt-list-file as well to only create the .disambig file for certain
program points, but do NOT use --var-list-file to try to create a .disambig only
for certain variables; this feature does not work yet. Modify the variable entries in the
Kvasir-generated .disambig file to suit your needs.

2. Now create a var-list-file by using --dump-var-file while running Kvasir with
the .disambig file that you have just created. This ensures that the variables listed
in var-list-file will have the proper names for use with that particular .disambig
file. Modify the Kvasir-generated var-list-file to suit your needs.

3. Finally, run Kvasir with the --var-list-file option using the var-list-file that
you have just created and either the --disambig or --disambig-file option with the
proper .disambig file. This will perform the desired function: selective variable tracing
along with disambiguation for all of the traced variables.

For maximum control of the output, you can use selective program point tracing, variable
tracing, and disambiguation together all at once.

7.3.6 C++ support

Kvasir supports C++, but Kvasir has been tested more on C programs than on C++
programs, so Kvasir’s C++ support is not as mature as its C support. Here is a partial list
of C++ features that Kvasir currently supports:

• Class member functions are traced just like regular functions, except that their first
parameter is a pointer (called this) to a single instance of the class. They are
printed with the class name as the prefix, followed by a period and then the full
function signature. For example, a push() function of a Stack class might be named
Stack.push(char*).

• OBJECT program points (see Section 5.2 [Program points], page 25) are printed out in
the .decls file for each class with at least 1 member variable and 1 member function.
No extra information besides member function traces are required in the .dtrace

file; Daikon can link together class and function names to determine when a particular
function is a member function and generate object invariants for that class by observing
the values of the this parameter.

• Static member variables are currently treated just like global variables, because they
actually have static global locations. Another (not yet implemented) possibility is to
only print them at program points of member functions belonging to the respective
variable’s own class.

• Inheritance is handled correctly because whenever Kvasir traverses inside of a class
to print out its member variables, it also recursively traverses inside all superclasses
(and inside their superclasses, etc...) to print out inherited member variables. The
superclass class names are appended onto the variable names to make them unique.
For example, if this is an instance of a class that inherits from another class called
fooClass which has a member variable fooVar, then Kvasir prints out fooVar as
this->fooClass.fooVar. This correctly handles the case of multiple inheritance as
well as several layers of inheritance. Thus, object invariants capture properties of a
class’s own member variables as well as those of its superclasses’ member variables.
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• Inheritance-based polymorphism is handled correctly without any extra effort because
when a function entrance or exit is encountered at run time, the version that is called
has already been resolved.

• Overloaded functions are handled correctly because Kvasir prints out the full function
signature as its name in order to prevent conflicts. For example, two overloaded versions
of a function foo() will be disambiguated by their signatures, such as foo(int, int)

and foo(double, double).

• Kvasir handles functions that pass parameters by reference as well as those that pass
parameters by value.

One current C++ limitation is that Kvasir cannot print out the contents of classes which
are defined in external libraries rather than in the user’s program (e.g., it can properly
output a C-string represented as char* but not the contents of the C++ string class).
If further support for specific C++ features are important to you, please send email to
daikon-developers@googlegroups.com, so that we can increase its priority on our to-do
list.

7.3.7 Online execution

The term online execution refers to running Daikon at the same time as the target
program, without writing any information to a file. This can avoid some I/O overhead,
prevent filling up your disk with files, and in the future Daikon may be able to produce
partial results as the target program is executing. A limitation of online execution is that,
unless FIFO files, or named pipes (see Section 7.3.7.1 [Online execution with DynComp
for C/C++], page 125) are used, it runs Daikon over only a single execution, as opposed to
generalizing over multiple executions as can be done when writing to files and supplying all
the files to Daikon. The Chicory front end for Java also supports online execution, via its
--daikon-online option (see Section 7.1.1.3 [Chicory miscellaneous options], page 96).

To use regular pipes in lieu of a disk file, simply use - as the name of the .dtrace file,
and run the target program and Daikon in a Linux pipeline. When the --dtrace-file=-

option is used to redirect the dtrace output to stdout, the target program’s stdout is
redirected to the terminal (/dev/tty) so that it does not intermix with the dtrace output.

kvasir-dtrace --dtrace-file=- ./bzip2 --help | $DAIKON -

Of course, you could also replace --help with -vv1 file.txt to compress a text file (but
start with a small one first).

(This example assumes that you have compiled the bzip2 example (in $DAIKONDIR/

examples/c-examples/bzip2 of the distribution) by saying gcc -gdwarf-2 bzip2.c

-o bzip2, and that $DAIKON stands for the command that invokes Daikon, for
instance java -Xmx512m daikon.Daikon --config_option daikon.derive.Derivation.

disable_derived_variables=true.)

Instead of a regular pipe, you can use a named pipe, also known as a FIFO, which is a
special kind of file supported by most Linux-compatible systems. When one process tries
to open a FIFO for reading, it blocks, waiting for another process to open it for writing (or
vice-versa). When both a reader and a writer are ready, the FIFO connects the reader to
the writer like a regular Linux pipe.
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The --output-fifo option causes Kvasir to create its output .dtrace file as a named
pipe. When Kvasir is run with this option, Daikon needs to be run at the same time to
read from the FIFO, such as from another terminal or using the shell’s ‘&’ operator.

For instance, the following two commands have the same effect as the pipeline above that
used ordinary pipes. The FIFO is named bzip2.dtrace.

kvasir-dtrace --output-fifo ./bzip2 --help &

$DAIKON bzip2.dtrace

The two commands (before and after the ampersand) could also be run in two different
terminals.

7.3.7.1 Online execution with DynComp for C/C++

When running Kvasir with DynComp (using the --with-dyncomp option), Kvasir gen-
erates the .decls file after it generates the .dtrace file, so it is not possible to perform
online execution using one run. The recommended way to perform online execution with
DynComp is to run it once and only generate a .decls file with comparability information,
then run Kvasir again without DynComp and pipe the .dtrace data directly into Daikon
while using the .decls file generated from the previous run:

kvasir-dtrace --with-dyncomp --decls-only ./foo

This should generate a .decls file with comparability information named daikon-output/

foo.decls.

kvasir-dtrace --dtrace-no-decs --dtrace-file=- ./foo \

| java daikon.Daikon daikon-output/foo.decls -

When you run Kvasir the second time, you don’t need to run DynComp again since
you are only interested in the .dtrace file. Notice that the .dtrace output is directed
to standard out (--dtrace-file=-) and does not contain any declarations (--dtrace-no-
decs) because the .decls file already contains the declarations. You can simply pipe that
.dtrace output out to Daikon, which is invoked using the .decls file (with comparability
information) generated during your previous run.

7.3.8 Installing Kvasir

There are two scenarios for building the Kvasir tool:

• You have downloaded a packaged release of Daikon from our website and have followed
the installation steps in Chapter 2 [Installing Daikon], page 2. If so, Kvasir is already
built and available for use.

• You wish to customize or extend Daikon and are (or will be) working with a clone of
the Daikon repository. The remainder of this section describes this case.

We assume you are already familiar with the Daikon Developer Manual, in particular
Section “Compiling Daikon” in Daikon Developer Manual. If that is not the case, you
should read that section first.

You will need to make a clone of Fjalar’s version control repository, named fjalar, as a
sibling of your Daikon clone.

cd $DAIKONDIR

cd ..
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git clone https://github.com/codespecs/fjalar.git

You may now build Fjalar (which includes Kvasir). The following commands build Fjalar,
install it locally, and make a symbolic link to it in your Daikon tree.

cd $DAIKONDIR

make kvasir

You may see warnings during this process. These can be ignored. If you receive an error
of the form:

readelf.c:53:17: fatal error: bfd.h: No such file or directory

#include "bfd.h"

^

compilation terminated.

it is most likely caused by the package binutils-dev not being installed.

Once Kvasir has been installed, it can be used via the kvasir-dtrace script in the
$DAIKONDIR/scripts directory; if you have set up the Daikon environment according to
the instructions above, it should already be in your PATH. For instructions on using Kvasir,
see Section 7.3 [Kvasir], page 105.

7.3.9 Kvasir implementation and limitations

Kvasir is based on the Valgrind dynamic program supervision framework (which is best
known for its memory error detection tool). Using Valgrind allows Kvasir to interrupt your
program’s execution, read its variables, and examine its memory usage, all transparently
to the program. Also, rather than using your program’s source code to find the names and
types of functions and variables, Kvasir obtains them from debugging information included
in the executable in a standard format (DWARF-2).

However, Kvasir has some limitations of its own. Because Kvasir uses Valgrind, it
shares Valgrind’s processor and operating system limitations. Furthermore, of the plat-
forms supported by Valgrind, the only ones currently supported by Kvasir are x86-linux

and amd64-linux. x86-linux refers to Intel 386-compatible processors (the so-called IA-32
architecture) such as the Intel Pentium and the AMD Athlon, running Linux. amd64-linux
refers to the 64-bit extension of the x86 architecture found in many newer Intel and AMD
processors, also variously referred to as x86-64, IA-32e, EM64T, and Intel 64, when running
under a Linux kernel in 64-bit mode. The Itanium or IA-64 architecture is not supported.
The Kvasir build process will automatically compile a 32-bit version, a 64-bit version, or
both, whichever are supported by your system’s default compiler.

Kvasir requires that your program have debugging information available in the DWARF-2
format, as produced by GCC version 3 and later. For the best results, the programs used by
Kvasir should be compiled without optimization.

This subsection lists some of the known limitations of the current Kvasir release; if you
encounter any problems other than listed here, please report them as bugs (see Section 9.4
[Reporting problems], page 161). The limitations are listed roughly in decreasing order of
severity.

• Kvasir-traced programs take a while to start (often a good fraction of a second). When
tracing short-lived programs, this overhead can dominate Kvasir’s per-instruction
runtime overhead. In order to make Kvasir run faster, try the --ignore-globals
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option in order to limit the amount of generated output. However, please keep in mind
that, when running simultaneously with Daikon using the --output-fifo option (see
Section 7.3.7 [Online execution], page 124), Kvasir can generate output data much
faster than Daikon can process it. Thus, it is not the performance bottleneck in the
entire invariant detection system.

• Kvasir’s support for outputting arrays is not yet complete. It still does not have the
functionality to print out multidimensional arrays with all of their elements or the
option to flatten multidimensional arrays into multiple single-dimensional arrays.

• Kvasir behaves somewhat differently with different versions of GCC. If feasible, we
recommend that you use Kvasir with version 4.7 (or newer). Incompatibilities between
Kvasir and the debugging information produced by older GCC versions can lead to
incorrect output and, in some cases, can cause Kvasir to crash.

• Kvasir with DynComp will produce different results for x86 and x86-64 hosts. This is
due to a DynComp limitation with regards to handling the AMD64 ABI. The AMD64
ABI allows structs that are less than 8-bytes to be passed to a function via register.
DynComp categorizes this as an interaction between all fields of the struct and will
mark all fields of the struct as comparable to each other.

• Kvasir is incompatible with some compiler optimizations. It is definitely incompatible
with the -fomit-frame-pointer optimization, and it may have trouble with other
optimizations as well. We recommend that you compile programs for Kvasir without
optimization.

• Kvasir always prints the contents of structures according to their compile-time type.
Programs that use generic pointers and structural equivalence to simulate object-
orientation will have derived-class fields missing when a structure is passed via a base-
class pointer. This limitation can be worked around by manually coercing a pointer to
a particular type (see Section 7.3.5.1 [Pointer type coercion], page 118).

7.4 .NET (C#) front end Celeriac

The Daikon front end for .NET languages, named Celeriac, is distributed separately; it
currently supports the C#, F# and Visual Basic .NET languages. Celeriac runs the .NET
program, creates data trace (.dtrace) files, and optionally runs Daikon on them. Celeriac
is named after the celeriac plant, whose root may be used as an ingredient in soups or stews.

To use Celeriac, run your program as you normally would, but with the Celeriac Launcher.
For instance, if you usually run

MyProgram.exe arg1 arg2 arg3

then instead you would run

CeleriacLauncher.exe celeriacArg1 celeriacArg2 MyProgram.exe arg1 arg2 arg3

This runs your program and creates the MyProgram.dtrace in the current directory. Since
Celeriac instruments class files directly as they are loaded into .NET, you do not need to
perform separate instrumentation and recompilation steps.

For more details about how to download and use Celeriac, please see https://github.

com/codespecs/daikon-dot-net-front-end.
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It should be noted that Celeriac works under Mono as well as under the Microsoft .NET
implementation.

To insert Daikon-inferred invariants in C# source code as Code Contracts, use Scout
(previously called Contract Inserter): https://bitbucket.org/fmc3/scout.

7.5 Perl front end dfepl

This section contains details about dfepl, the Daikon front end for Perl. For a brief
introduction to dfepl, see Section 3.4.2 [Perl examples], page 16 and Section 3.4.1 [In-
strumenting Perl programs], page 15.

dfepl works with Perl versions 5.8 and later. (To be precise, Perl programs instrum-
ented with dfepl can also be run with Perl 5.6, but the instrumentation engine, which is
itself written in Perl, requires version 5.8). dfepl reads the source code for Perl modules
or programs, and writes out instrumented versions of that code that keep track of funct-
ion parameters, and make calls to routines in the daikon_runtime package whenever an
instrumented subroutine is entered or exited.

The instrumentation engine recognizes parameters as those variables that are declared
with my(...) or local(...) and, in the same expression, assigned to from a value related
to the argument array @_, but only among the first contiguous series of such assignments in
the body of a subroutine. This will capture the most common assignment idioms, such as
my $self = shift; (where shift is short for shift @_), my $x = $_[0];, and my($x, $y,

@a) = @_;, but the arguments to subroutines which access them only directly through @_,
or that perform other operations before reading their arguments, will not be recognized.

If the uninstrumented code requested warnings via the use warnings pragma or by add-
ing the -w flag on the #! line, the instrumented code will also request warnings. In this
case, or if -w is specified on the command line when running it, the instrumented code
may produce warnings that the original code did not. There are several situations in
which the instrumented code produced by dfepl, while functionally equivalent to the or-
iginal, generates more warnings. The most common such problem, which arises from code
that captures the scalar-context return value of a subroutine that returns a list, has been
avoided in the current version by disabling the warning in question. Other warnings which
are known to be produced innocuously in this way include ‘Ambiguous call resolved as

CORE::foo(), qualify as such or use &’ (caused by code that uses CORE:: to distinguish
a built-in function from a user subroutine of the same name), and ‘Constant subroutine

foo redefined’ (caused by loading both instrumented and uninstrumented versions of a
file). Though some such warnings represent deficiencies in the instrumentation engine, they
can be safely ignored when they occur.

Because Perl programs do not contain static type information to distinguish, for instance,
between strings and numbers, the Perl front end incorporates an additional dynamic analysis
to infer these types. This type guessing, which occurs as a first pass before the program can
be instrumented to produce output for Daikon, operates in a manner somewhat analogous
to Daikon itself: watching the execution of a program, the runtime system chooses the most
restrictive type for a variable that is not contradicted during that execution. These types
indicate, for instance, whether a scalar value always holds an integer, a possibly fractional
numeric value, or a reference to another object. It should not be necessary to examine or
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modify this type information directly, but for the curious, the syntax of the type information
is described in comments in the Daikon::PerlType module.

The safest course is to infer types for variables using exactly the same program executions
(e.g., test cases) which will later be used to generate traces for Daikon, as this guarantees
that the type information will match the actual data written to the trace file. However,
because the type-guessing-instrumented versions of programs run fairly slowly in the current
version, you may be tempted to use a subset of the input data for type guessing. Doing so is
possible, but it will only work correctly if the smaller tests exercise all of the instrumented
subroutines and exit points with all the types of data they will later be used with. If the
trace runtime tries to output a data value that doesn’t match the inferred type, the value
may silently be converted according to Perl’s usual conventions (for instance, a non-numeric
string may be treated as the number zero), or it may cause an error during tracing (for
instance, trying to dereference a supposed array reference that isn’t). Also, if a subroutine
exit point is traced but was never encountered during type guessing, the generated .decls

and .dtrace files will be incompatible in a way that will cause Daikon to abort with an
error message of the form ‘Program point foo():::EXIT22 appears in .dtrace file but

not in any .decls file’.
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Figure 7.1: Workflow of instrumenting Perl code with dfepl.

dfepl works by reading one or more Perl programs or modules, and writing out new
versions of those files, instrumented to capture information about their execution, by def-
ault to another directory. dfepl is used in two passes: first, before type information is
available, instrumented versions are written to a directory daikon-untyped. These un-
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typed programs, when run, will write files containing dynamically inferred type information
(with the extension .types), by default to the daikon-instrumented directory. When
dfepl is rerun with this type information, it produces type-aware instrumented code in the
daikon-instrumented directory, which when run produces execution traces in files with
the extension .dtrace in the a directory daikon-output.

7.5.1 dfepl options

--absolute

--no-absolute

--absolute stores the absolute path to the output directories (by default named
daikon-untyped, daikon-instrumented or daikon-output) in the instrumented
programs, so that no matter where the instrumented program is run, the output
will go to a fixed location. Even if these directories are given as relative paths (as is
the default), --absolute specifies that they should always be taken as relative to the
directory that was the working directory when dfepl was run.

--no-absolute specifies the opposite, causing the output paths to be interpreted
relative to the current working directory each time the instrumented program is
invoked. The default, when neither option is specified, is for .types files to use
an absolute path, but all others to use relative path, so that the .types files will
always be in the same place as the instrumented source files that generated them,
but the daikon-output directory will be created in the current directory when the
program runs.

--accessor-depth=num

Controls the number of nested invocations of object accessor methods to examine. For
instance, suppose that the Person class has a method mother() that returns another
person (and has been specified to dfepl as an accessor), and that $me is an instrum-
ented variable. If the accessor depth is 1, only $me->mother() will be examined. If
the depth is 2, $me->mother()->mother() will also be examined. Specifying large
accessor depths is generally not advisable, especially with many accessor methods, as
the number of variables examined can be too many for Daikon to process efficiently.

By default, the Daikon Perl trace runtime will examine at most a single level of
accessors.

-A

--accessors-dir=directory

Look for files containing accessor lists in directory, or the current directory if directory
is omitted. For a class Acme::Foo, accessors are methods that return information
about an object but do not modify it. dfepl cannot determine on its own which
methods are accessors, but when a list of them is provided, it can call an object’s
accessors when examining a variable of that class to obtain more information about
the object. To tell dfepl about the accessors for Acme::Foo, make a file listing
the names of each accessor method, one per line with no other punctuation, named
Acme/Foo.accessors in the same directory as Acme/Foo.pm.

DRAFT 1 June 2016



Chapter 7: Front ends (instrumentation) 132

--decls-dir=directory

Put generated declaration files in directory and its subdirectories. The default is
daikon-output.

--decls-style=style

style should be one of combined, flat, or tree. A style of combined specifies
that the declarations for all packages should be merged, in a file named
prog-combined.decls where prog is the name of the program. A style of flat

specifies that the declarations for each package should be in a separate file named
after the package, but that these files should go in a single directory; for instance, the
declarations for Acme::Trampoline and Acme::Skates::Rocket would go in files
named Acme::Trampoline.decls and Acme::Skates::Rocket.decls. A style of
tree specifies that each package should have its own declarations file, and that those
files should be arranged in directories whose structure matches the structure of their
package names; in the example above, the files would be Acme/Trampoline.decls

and Acme/Skates/Rocket.decls.

The default is tree. Note that --decls-style and --types-style are currently
constrained to be the same; if one is specified, the other will use the same value.

--dtrace-append

--no-dtrace-append

When --dtrace-append is specified, the instrumented program will append trace
information to the appropriate .dtrace file each time it runs. When --no-dtrace-

append is specified, it will overwrite the file instead.

The default behavior is to overwrite. This choice can also be overridden, when the
program is run, to always append by setting the environment variable DTRACEAPPEND
to 1.

When appending to a .dtrace file, no declaration information is ever produced,
because it would be redundant to do so and Daikon does not permit re-declarations
of program points.

--dtrace-dir=directory

Put generated trace files in directory and its subdirectories. The default is
daikon-output.

--dtrace-style=style

style should be one of combined, flat, or tree. A style of combined specifies that
the traces for all packages should be merged, in a file named prog-combined.dtrace,
where prog is the name of the program. A style of flat specifies that the traces for
each package should be in a separate file named after the package, but that these files
should go in a single directory; for instance, the declarations for Acme::Trampoline
and Acme::Skates::Rocket would go in files named Acme::Trampoline.dtrace and
Acme::Skates::Rocket.dtrace. A style of tree specifies that each package should
have its own trace file, and that those files should be arranged in directories whose
structure matches the structure of their package names; in the example above, the
files would be Acme/Trampoline.dtrace and Acme/Skates/Rocket.dtrace.

The default is combined.
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--help

Print a short options summary.

--instr-dir=directory

--instrsourcedir=directory

Put instrumented source files in directory and its subdirectories. The default is
daikon-untyped, or daikon-instrumented if type information is available.

--list-depth=DEPTH

Consider as many as DEPTH of the first elements of a list to be distinct entities,
for the purpose of guessing their types. When subroutines return a list of values,
each value may have a distinct meaning, or the list may be homogeneous. When
trying to assign types to the elements of a list, the Daikon Perl trace runtime will
try making separate guesses about the types of the elements of a short list, but it
would be inefficient to make retain this distinction for many elements. This parameter
controls how many elements of a list will be examined individually; all the others will
be treated uniformly.

The default is 3.

--output-dir=directory

Put all of the files that are the output of the tracing process (and therefore input
to the Daikon invariant detection engine) in directory and its subdirectories. This
option is a shorthand equivalent to setting both --decls-dir and --dtrace-dir to
the same value.

The default behavior is as if --output-dir=daikon-output had been specified.

--perl=path

Use path as the location of Perl when calling the annotation back end (a module
named B::DeparseDaikon), rather than the version of Perl under which dfepl itself
is running, which is probably the first perl that occurs on your path. For instance, if
the first version of perl on your path isn’t version 5.8 or later, you should this option
to specify another perl program that is.

--nesting-depth=num

When examining nested data structures, traverse as many as num nested references.
For instance, suppose that @a is the array

@a = ({1 => [2, 3]}, {5 => [4, 2]})

If the depth is 0, then when examining @a, Daikon’s Perl trace runtime will consider
it to be an array whose elements are references, but it won’t examine what those
references point to. If the depth is 1, it will consider it to be an array of references to
hashes whose keys are integers and whose values are references, but it won’t examine
what those references point to. Finally, if the depth is 2 or more, it will consider @a
to be an array of references to hashes whose keys are integers and whose values are
references to arrays of integers.

The default nesting depth is 3.

When referenced objects have accessor methods, or when accessors return referen-
ces, the --accessor-depth and --nesting-depth options interact. Specifically, if
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these depths are A and R, the behavior is as if the runtime has a budget of 1 unit,
which it can use either on accessors which cost 1/A or references which cost 1/R. It
may thus sometimes be useful to specify fractional values for --accessor-depth and
--nesting-depth; in fact, the default accessor depth is 1.5.

--types-append

--no-types-append

When --types-append is specified, the instrumented program will append type in-
formation to the appropriate .types file each time it runs. When --no-types-append

is specified, it will overwrite the file instead.

The default behavior is to append. If --no-types-append is specified, however,
this choice can also be overridden, when the program is run, to append by setting
the environment variable TYPESAPPEND to 1. There is no way to use environment
variables to force the runtime to overwrite a types file, but an equivalent effect can
be obtained by simply removing the previous types file before each run.

-T

--types-dir=directory

Look for .types files in directory, or daikon-instrumented if directory is omitted.
When instrumenting a module Acme::Trampoline, used in a program coyote.pl,
dfepl will look for files named coyote-combined.types, Acme::Trampoline.types,
and Acme/Trampoline.types, corresponding to the possible choices of --types-

style. Once discovered, the files are used in the same way as for -t.

--types-file=file

-t file

Include type information from file when instrumenting programs or modules. Since
Daikon needs to know the types of variables when they are declared, useful .decls and
.dtrace files can only be produced by source code instrumented with type informat-
ion. Since Perl programs don’t include this information to begin with, and it would
be cumbersome to produce by hand, type information must usually be produced by
running a version of the program that has itself been annotated, but without type
information. The Daikon Perl trace runtime will automatically decide whether to
output types, or declarations and traces, depending on whether the source was in-
strumented without or with types. This option may occur multiple times, to read
information from multiple types files (irrelevant type information will be ignored).

--types-basedir=directory

Put files containing type information in directory and its subdirectories. By default,
this is whatever --instr-dir is, usually daikon-instrumented.

--types-style=style

style should be one of combined, flat, or tree. A style of combined specifies that
the types for all packages should be merged, in a file named prog-combined.types,
where prog is the name of the program. A style of flat specifies that the types for
each package should be in a separate file named after the package, but that these files
should go in a single directory; for instance, the declarations for Acme::Trampoline
and Acme::Skates::Rocket would go in files named Acme::Trampoline.types and
Acme::Skates::Rocket.types. A style of tree specifies that each package should
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have its own trace file, and that those files should be arranged in directories whose
structure matches the structure of their package names; in the example above, the
files would be Acme/Trampoline.types and Acme/Skates/Rocket.types.

The default is tree. Note that --types-style and --decls-style are currently
constrained to be the same; if one is specified, the other will use the same value.

--verbose

-v Print additional information about what dfepl is doing, including external commands
invoked.

7.6 Comma-separated-value front end convertcsv.pl

Daikon can process data from spreadsheets such as Excel. In order to use such files,
first save them in comma-separated-value format, also known as csv or comma-delimited
or comma-separated-list, format. Then, convert the .csv file into a .dtrace file (and a
.decls file) to be used by Daikon by running the convertcsv.pl program found in the
$DAIKONDIR/scripts directory. For example,

convertcsv.pl myfile.csv

produces files myfile.decls and myfile.dtrace.

Important: run convertcsv.pl without any arguments in order to see a usage message.

In order to ensure all data is processed, use Daikon with the --nohierarchy option, as
follows:

java daikon.Daikon --nohierarchy myfile.decls myfile.dtrace

In a future release, the --nohierarchy option may not be necessary, but it should always
be safe to use this option.

Before running convertcsv.pl, you may need to install Text::CSV, a Perl package that
convertcsv.pl uses. You also need the checkargs.pm file, which is part of the plume-lib
library (https://github.com/mernst/plume-lib).

7.7 Other front ends

It is relatively easy to create a Daikon front end for another language or run-time system.
For example, people have done this without any help at all from the Daikon developers. For
more information about building a new front end, see Section “New front ends” in Daikon
Developer Manual.

A front end for WS-BPEL process definitions, named Takuan, is distributed separately;
see https://neptuno.uca.es/redmine/projects/takuan-website.

A front end for the Eiffel programming language, named CITADEL, is distributed separa-
tely; see http://se.inf.ethz.ch/people/polikarpova/citadel/.

A front end for the IOA (Input/Output Automata) programming language is distributed
separately; see http://groups.csail.mit.edu/tds/ioa.html.

An earlier version of Daikon included a Lisp front end, but it is no longer supported.

An earlier version of Daikon provided a source-based front end for Java named dfej. It
has been superseded by Chicory (see Section 7.1 [Chicory], page 92).
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An earlier version of Daikon provided a source-based front end for C named dfec. It has
been superseded by Kvasir (binary-based, for Linux/x86; see Section 7.3 [Kvasir], page 105).
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8 Tools for use with Daikon

This chapter describes various tools that are included with the Daikon distribution.

8.1 Tools for manipulating invariants

This section gives information about tools that manipulate invariants (in the form of
.inv files).

8.1.1 Printing invariants

Daikon provides many options for controlling how invariants are printed. Often, you may
want to print the same set of invariants several different ways. However, you only want
to run Daikon once, since it may be very time consuming. The PrintInvariants utility
prints a set of invariants from a .inv file.

PrintInvariants is invoked as follows:

java daikon.PrintInvariants [flags] inv-file

PrintInvariants shares many flags with Daikon. These flags are only briefly summarized
here. For more information about these flags, see Section 4.4 [Daikon configuration options],
page 22.

--help

Print usage message.

--format name

Produce output in the given format. See Section 5.1 [Invariant syntax], page 24.

--output filename

Send output to the specified file rather than stdout.

--output_num_samples

Output numbers of values and samples for invariants and program points; for
debugging.

--ppt-select-pattern

Only outputs program points that match the specified regular expression

--config filename

Load the configuration settings specified in the given file. See Section 6.1 [Configurat-
ion options], page 55, for details.

--config_option name=value

Specify a single configuration setting. See Section 6.1 [Configuration options], page 55,
for details.

--dbg category

--debug

Enable debug loggers.

--track class<var1,var2,var3>@ppt

Track information on specified invariant class, variables and program point. For more
information, see Section “Track logging” in Daikon Developer Manual.
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--wrap-xml

Print extra info about invariants, and wrap in XML tags. This is primarily for
programmatic use and for debugging.

8.1.2 MergeInvariants

The MergeInvariants utility merges multiple serialized invariant files to create a single
serialized invariant file that contains the invariants that are true across each of the input
files. The results of merging N serialized invariant files should be the same as running
Daikon on the N original .dtrace files.

MergeInvariants is invoked as follows:

java daikon.MergeInvariants [flags]... file1 file2...

file1 and file2 are files containing serialized invariants produced by running Daikon. At
least two invariant files must be specified.

MergeInvariants shares many flags with Daikon. These flags are only briefly summarized
here. For more information about these flags, see Section 4.4 [Daikon configuration options],
page 22.

-h --help

Print usage message.

-o inv_file

Output serialized invariants to the specified file; they can later be postprocessed,
compared, etc. If not specified, the results are written to standard out.

--config_option name=value

Specify a single configuration setting. See Section 6.1 [Configuration options], page 55,
for details.

--dbg category

Enable debug loggers.

--track class<var1,var2,var3>@ppt

Track information on specified invariant class, variables and program point. For more
information, see Section “Track logging” in Daikon Developer Manual.

8.1.3 Invariant Diff

The invariant diff utility is designed to output the differences between two sets of invar-
iants. This is useful, for example, if you want to compare the invariants generated by two
versions of the same program.

Invariant diff is invoked as follows:

java daikon.diff.Diff [flags]... file1 [file2]

file1 and file2 are files containing serialized invariants produced by running Daikon or Diff
with the -o flag. If file2 is not specified, file1 is compared with the empty set of invariants.

This section describes the optional flags.

--help

Print usage message.
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-d Display the tree of differing invariants (default). Invariants that are the same in file1
and file2 are not printed. At least one of the invariants must be justified. Does not
print “uninteresting” invariants (currently some ‘OneOf’ and ‘Bound’ invariants).

-u Include “uninteresting” invariants in the tree of differing invariants.

-y

--ignore_unjustified

Include (statistically) unjustified invariants.

-a Display the tree of all invariants. Includes invariants that are the same in file1 and
file2, and unjustified invariants.

-s For internal use only. Display the statistics between two sets of invariants. The pairs
of invariants are placed in bins according to the type of the invariant and the type of
the difference.

-t For internal use only. Display the same statistics as -s, but as a tab-separated list.

-m Compute (file1 - file2). This is all the invariants that appear in file1 but not file2.
Unjustified invariants are treated as if they don’t exist. Output is written as a ser-
ialized ‘InvMap’ to the file specified with the -o option. To view the contents of the
serialized ‘InvMap’, run java daikon.diff.Diff file.

-x Compute (file1 XOR file2). This is all the invariants that appear in one file but not
the other. Unjustified invariants are treated as if they don’t exist. Output is written
as a serialized ‘InvMap’ to the file specified with the -o option. To view the contents
of the serialized ‘InvMap’, run java daikon.diff.Diff file.

-n Compute (file1 UNION file2). This is all the invariants that appear in either file.
If the same invariant appears in both files, the one with the better justification is
chosen. Output is written as a serialized ‘InvMap’ to the file specified with the -o

option. To view the contents of the serialized ‘InvMap’, run java daikon.diff.Diff

file.

-o inv_file

Used in combination with the -m or -x option. Writes the output as a serialized
‘InvMap’ to the specified file.

-j For internal use only. Treat justification as a continuous value when gathering
statistics. By default, justification is treated as a binary value — an invariant is
either justified or it is not. For example, assume invariant ‘I1’ has a probability of
.01, and ‘I2’ has a probability of .5. By default, this will be a difference of 1, since
‘I1’ is justified but ‘I2’ is not. With this option, this will be a difference of .49, the
difference in the probabilities. This only applies when one invariant is justified, and
the other is unjustified.

-p Examine all program points. By default, only procedure entries and combined proc-
edure exits are examined. This option also causes conditional program points to be
examined.

-e Print empty program points. By default, program points are not printed if they
contain no differences.
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-v Verbose output. Invariants are printed using the repr() method, instead of the
format() method.

-l For debugging use only. Prints logging information describing the state of the program
as it runs.

--invSortComparator1 classname

--invSortComparator2 classname

--invPairComparator classname

Use the specified class as a custom comparator. A custom comparator can be used
for any of 3 operations: sorting the first set of invariants, sorting the second set of
invariants, and combining the two sets into the pair tree. The specified class must
implement the Comparator interface, and accept objects of type Invariant.

8.1.4 Annotate

The Annotate program inserts Daikon-generated invariants into Java source code as an-
notations in DBC, ESC, Java or JML format. These annotations are comments that can be
automatically verified or otherwise manipulated by other tools. The Daikon website has
an example of code after invariant insertion: http://plse.cs.washington.edu/daikon/
StackAr.html.

Invoke Annotate like this:

java daikon.tools.jtb.Annotate Myprog.inv Myprog.java Myprog2.java ...

The first argument is a Daikon .inv or .inv.gz file produced by running Daikon with the
-o command-line argument. All subsequent arguments are .java files. The original .java
files are left unmodified, but Annotate produces new versions of the .java files (with names
suffixed as -escannotated, -jmlannotated, or -dbcannotated) that include the Daikon
invariants as comments.

The options are:

--format name

Produce output in the given format. See Section 5.1 [Invariant syntax], page 24.

--no_reflection

Do not use reflection to find information about the classes being instrumented. This
allows Annotate to run without having access to the class files. Since the class files
are necessary to generate ‘also’ tags, those tags will be left out when this option is
chosen.

--max_invariants_pp count

Output at most count invariants per program point (which ones are chosen is not
specified).

--wrap_xml

Each invariant is printed using the given format (ESC, JML or DBC), but the invar-
iant expression is wrapped inside XML tags, along with other information about the
invariant.

For example, if this switch is set, the output format is ESC, and an invariant for
method foo(int x) normally prints as
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/* requires x != 0; */

Then the resulting output will look something like this (all in one line; we break it
up here for clarity):

/* requires <INVINFO>

<INV> x != 0 </INV>

<SAMPLES> 100 </SAMPLES>

<DAIKON> x != 0 </DAIKON>

<DAIKONCLASS> daikon.inv.unary.scalar.NonZero </DAIKONCLASS>

<METHOD> foo() </METHOD>

</INVINFO> ; */

Note that the comment will no longer be a legal ESC/JML/DBC comment. To make it
legal again, you must replace the XML tags with the string between the ‘<INV>’ tag.

Also note the extra information printed with the invariant: the number of samples
from which the invariant was inferred, the Daikon representation (i.e., the Daikon
output format), the Java class that the invariant corresponds to, and the method
that the invariant belongs to (null for object invariants).

If Annotate issues a warning message of the form

Warning: Annotate: Daikon knows nothing about field ...

then the Annotate tool found a variable in the source code that was computed by Daikon.
This can happen if Daikon was run omitting the variable, for instance due to --std-

visibility. It can also happen due to a bug in Annotate or Daikon; if that is the case,
please report it to the Daikon developers.

8.1.5 AnnotateNullable

AnnotateNullable determines which variables in a Java program were ever null during
execution. AnnotateNullable makes it easier to use the Nullness Checker that is part of
the Checker Framework.

The ‘Nullness’ Checker warns the programmer about possible null dereference errors.
This is useful, but it requires the programmer to write a @Nullable annotation anywhere
that a variable might contain null. (An unannotated reference is assumed to never be null
at run time.)

The AnnotateNullable tool automatically and soundly determines a subset of the
proper @Nullable annotations, reducing the programmer’s burden. Each annotation that
AnnotateNullable infers is correct. The programmer may need to write some additional
@Nullable annotations, but that is much easier than writing them all.

To insert @Nullable annotations in your program, follow these steps:

1. Run your application one or more times to create a trace file. The more thorough
your test runs, the larger number of @Nullable annotations AnnotateNullable will
produce.

java daikon.Chicory --dtrace-file=an.dtrace.gz mypackage.MyClass arg1 arg2 ...

2. Run Daikon on the resulting .dtrace file:
java daikon.Daikon an.dtrace.gz --no_text_output \

--config daikondir/java/daikon/annotate_nullable.config
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3. Run the AnnotateNullable tool to create an annotation index file. AnnotateNullable
writes its output to standard out, so you should redirect its output to a .jaif file.

java daikon.AnnotateNullable an.inv.gz > nullable-annotations.jaif

4. Use the Annotation File Utilities to insert the annotations in your .class or .java

file.
# To insert in class files:

insert-annotations mypackage.MyClass nullable-annotations.jaif

# To insert in source files:

insert-annotations-to-source nullable-annotations.jaif \

mypackage/MyClass.java annotated/mypackage/MyClass.java

AnnotateNullable is invoked as follows:
java daikon.AnnotateNullable [flags] inv-file

The flags are:

-n --nonnull-annotations

Adds ‘NonNull’ annotations as well as ‘Nullable’ annotations. Unlike ‘Nullable’
annotations, ‘NonNull’ annotations are not guaranteed to be correct.

8.1.6 Runtime-check instrumenter (runtimechecker)

The runtimechecker instrumenter inserts, into a Java file, instrumentation code that
checks invariants as the program executes. For a full list of options, run:

java daikon.tools.runtimechecker.Main help

The instrument command to runtimechecker creates a new directory instrumented-

classes containing a new version of the user-specified Java files, instrumented to check
invariants at runtime and to record a list of invariant violations in a Java data structure.
You can compile and run the instrumented version of your program.

Here is an example of using the runtime-check instrumenter to create a version of file
ubs/BoundedStack.java that checks the invariants in invariant file BoundedStack.inv.gz:

java daikon.tools.runtimechecker.Main instrument BoundedStack.inv.gz \

ubs/BoundedStack.java

The instrumented Java code references classes in the daikon.tools.runtimechecker

package, so those classes must be present in the classpath when the instrumented classes
are compiled and executed.

Invariants are evaluated at the program points at which they should hold. Three things
can happen when evaluating an invariant:

• It evaluates to true, which means that the invariant holds. Program execution continues
normally.

• It evaluates to false, which means that the invariant doesn’t hold. In this case the
corresponding daikon.tools.runtimechecker.Property is added to a list in the class
daikon.tools.runtimechecker.Runtime. A programmer can obtain the growing list
of violated invariants through the method daikon.tools.runtimechecker.Runtime.

getViolations(). (See that class for other useful methods.)

• A Throwable (exception) is thrown when evaluating the invariant. In this case,
the throwable is added to the list daikon.tools.runtimechecker.Runtime

.internalInvariantEvaluationErrors. The throwable is not rethrown.
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Note that the instrumented program does not do anything with the list of violations;
it merely creates the list. You will need to write your own code to process that list; see
Section 8.1.6.1 [How to access violations], page 143.

8.1.6.1 How to access violations

The instrumented class handles violations silently: it simply adds them to a list in the
class daikon.tools.runtimechecker.Runtime. No “invariant violation” exceptions are
thrown, and the violated invariants can only be obtained dynamically (while the program
is running) by calling daikon.tools.runtimechecker.Runtime.getViolations().

To obtain a file of all the violations for a program execution, you can use program daikon.

tools.runtimechecker.WriteViolationFile. For example, if you usually run

java MyProg arg1 arg2

then instead you would run

java daikon.tools.runtimechecker.WriteViolationFile MyProg arg1 arg2

This will create a file called violations.txt in the current directory, immediately bef-
ore the program exits normally. If the program under test calls System.exit, then no
violations.txt file is created. (JUnit is an example of a program that calls System.exit.)

The following code snippet contains a method callMethod() which presumably calls one
of the methods in the instrumented class. The code detects if any violations occurred, and
if so, prints a message.

daikon.tools.runtimechecker.Runtime.resetViolations();

daikon.tools.runtimechecker.Runtime.resetErrors();

callMethod();

List<Violation> vs = daikon.tools.runtimechecker.Runtime.getViolations();

if (!vs.isEmpty())

System.out.println("Violations occurred.");

In addition, the instrumenter adds the following two methods to the instrumented class:

• isDaikonInstrumented(). Returns true (you could calling this method to see if the
class has been instrumented).

• getDaikonInvariants(). Returns the array of properties being checked.

8.1.6.2 Problems compiling instrumented code

When compiling the instrumented code, the Java compiler might emit an error such as:

error: longitude has private access in GeoPoint

If you receive the error above, then a variable in an invariant (longitude in this case) has
been declared private.

There are two ways to fix this. To check invariants that mention private variables,
supply the --make_all_fields_public command-line option when running ‘java
daikon.tools.runtimechecker.Main instrument ...’. To ignore invariants that
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mention private variables, rebuild the .dtrace file by rerunning Chicory using the
--std-visibility command-line option.

Another error the Java compiler might emit is:

error: code too large for try statement

You get the above error if the combined size of the original source code, plus the instrum-
entation code, is larger than the JVM’s limit of 65536 bytes of bytecode per method.

You can correct the problem by using a smaller number of invariants when instrumenting.
See Section 9.1.4 [Too much output], page 151.

(Eventually, it might be nice for the instrumenter to place its code in one or more separate
methods so that no one of them is too large.)

8.1.7 InvariantChecker

The InvariantChecker program takes a set of invariants found by Daikon and a set of
data trace files. It checks each sample in the data trace files against each of the invariants.
Any sample that violates an invariant is noted, via a message printed to standard output
or to a specified output file.

InvariantChecker is invoked as follows:

java daikon.tools.InvariantChecker [options] invariant-file dtrace-files

The invariant-files are invariant files (.inv) created by running Daikon. The dtrace-files
are data trace (.dtrace) files created by running the instrumented program. The files may
appear in any order; the file type is determined by whether the file name contains .dtrace,
or .inv.

The options are:

--help

Print usage message.

--output output-file

Write any violations to the specified file.

--conf

Checks only invariants that are above the default confidence level.

--filter

Checks only invariants that are not filtered by the default filters.

--verbose

Print all samples that violate an invariant. By default only the totals are printed.

--dir directory-name

Processes all invariant files in the given directory and reports the number of invariants
that failed on any of the .dtrace files in that directory. We only process invariants
above the default confidence level and invariants that have not been filtered out by
the default filters.
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--config_option name=value

--dbg category

--track class<var1,var2,var3>@ppt

These switches are the same as for Daikon. They are described in Chapter 4 [Running
Daikon], page 18.

8.1.8 LogicalCompare

Suppose you have two sets of invariants describing the operation of a software module
or describing two implementations of a module with the same interface. Roughly, one set
of invariants is “stronger” than another if in any situation where the “stronger” invariants
hold, the “weaker” invariants also hold. The LogicalCompare tool checks whether two sets
of invariants satisfy this relationship.

In order to use LogicalCompare, Simplify must be installed (see Section 9.1.11.1 [Install-
ing Simplify], page 155).

An invocation of LogicalCompare has the following form:

java daikon.tools.compare.LogicalCompare [options] \

weak-invs strong-invs [enter-ppt [exit-ppt]]

The LogicalCompare program takes two mandatory arguments, which are .inv files
containing invariants. LogicalCompare checks whether the invariants in the first file are
weaker (implied by) the invariants in the second file. LogicalCompare prints any exceptions
to this implication, preceded by the text “Invalid:”.

To be precise, for each pair of program points representing a single method or function,
LogicalCompare will check that each precondition (:::ENTER point invariant) in the “stron-
ger” invariant set is implied by some combination of invariants in the “weaker” invariant
set, and that each postcondition (:::EXIT point invariant) in the “weaker” invariant set is
implied by some combination of postconditions in the “stronger” set and preconditions in
the “weaker” set.

If no other regular arguments besides the two .inv files are supplied, all the method
or function program points that exist in both files will be compared, with a exception
message reported for each method that exists in the “weaker” set but not the “stronger”.
Alternatively, one or two additional arguments may be supplied, which name an :::ENTER

program point and an :::EXIT program point to examine (if only an :::ENTER program
point is supplied, the corresponding combined :::EXIT point is selected automatically).

LogicalCompare accepts the following options:

--assume file

Read additional assumptions about the behavior of compared routines from the file
file. The assumptions file should consist of lines starting with ‘PPT_NAME’, followed by
the complete name of an :::ENTER program point, followed by lines each consisting
of a Simplify formula, optionally followed by a # and a human-readable annotation.
Blank lines and lines beginning with a # are ignored. The assumption properties will
be used as if they were invariants true at the strong :::EXIT point when checking
weak :::EXIT point invariants.
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--config_option option=value

Specify a single configuration setting. The available settings are the same as can
be passed to Daikon’s --config_option option, though because the invariants have
already been generated, some will have no effect. For a list of available options, see
Section 6.1 [Configuration options], page 55.

--config-file=file

Read configuration options from the file file. This file should have the same format as
one passed to Daikon’s --config option, though because the invariants have already
been generated, some will have no effect.

--debug

--dbg category

These options have the same effect as the --debug and --dbg options to Daikon,
causing debugging logs to be printed.

--filters=[bBoOmjpi]

Control which invariants are removed from consideration before implications are
checked. Note that except as controlled by this option, LogicalCompare does not
perform any of the filters that normally control whether invariants are printed by
Daikon. Also, invariants that cannot be formatted for the Simplify automatic theorem
prover will be discarded in any case, as there would be no other way to process them.
Each letter controls a filter: an invariant is rejected if it is rejected by any filter (or,
equivalently, kept only if it passes through every filter).

b Discard upper-bound and lower-bound invariants (such as ‘x <= c’ and ‘x >=

c’ for a constant c), when Daikon considers the constant to be uninteresting.
Currently, Daikon has a configurable range of interesting constant: by default,
-1, 0, 1, and 2 are interesting, and no other numbers are.

B Discard all bound invariants, whether or not the constants in them are consid-
ered interesting.

o Discard ‘one-of’ invariants (which signify that a variable always had one of
a small set of values at runtime), when the values that the variable took are
considered uninteresting by Daikon.

O Discard all ‘one-of’ invariants, whether or not the values involved are interest-
ing.

m Discard invariants for which it was never the case that all the variables involved
in the invariant were present at the same time.

j Discard invariants that Daikon determines to be statistically unjustified, accor-
ding to its tests.

p Discard invariants that refer to the values of pass-by-value parameters in the
postcondition, or to the values of objects pointed to by parameters in postcon-
ditions, when the pointer is not necessarily the same as at the entrance to the
method or function. Usually such invariants reflect implementation details that
would not be visible to the caller of a method.

DRAFT 1 June 2016



Chapter 8: Tools for use with Daikon 147

i Discard implication invariants when they appear in :::ENTER program points.

The default set of filters corresponds to the letters ijmp.

--help

Print a brief summary of available command-line options.

--no-post-after-pre-failure

If implication is not verified between two invariant sets after examining the precon-
ditions, do not continue to check the implication involving postconditions. Because
the postconditions aren’t formally meaningful outside the domain specified by the
preconditions, this is the safest behavior, but in practice trivial precondition mism-
atches may prevent an otherwise meaningful postcondition comparison. See also
--post-after-pre-failure.

--proofs

For each implication among invariants that is verified, print a minimal set of conditions
that establish the truth of the conclusion. The set is minimal, in the sense that if any
condition were removed, the conclusion would no longer logically follow according to
Simplify, but it is not the least such set: there may exist a smaller set of conditions
that establish the conclusion, if that set is not a subset of the set printed. Beware
that because this option uses a naive search technique, it may significantly slow down
output.

--post-after-pre-failure

Even if implication is not verified between two invariant sets after examining the
preconditions, continue to check the implication involving postconditions. This is
somewhat dangerous, in that if the implication does not hold between the precon-
ditions, the invariant sets may be inconsistent, in which case reasoning about the
postconditions is formally nonsensical, but the tool will attempt to ignore the contrad-
iction and carry on in this case. This is now the default behavior, so the option has
no effect, but it is retained for backward compatibility. See also --no-post-after-

pre-failure.

--show-count

Print a count of the number of invariants checked for implication.

--show-formulas

For each invariant, show how it is represented as a logical formula passed to Simplify.

--show-sets

Rather than testing implications among invariants, simply print the sets of weak and
strong :::ENTER and :::EXIT point invariants that would normally be compared.
The invariants are selected and filtered as implied by other options.

--show-valid

Print invariants that are verified to be implied (“valid”), as well as those for which
the implication could not be verified (“invalid” invariants, which are always printed).

--timing

For each set of invariants checked, print the total time required for the check. This
time includes both processing done by LogicalCompare directly, and time spent wait-
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ing for processing done by Simplify, but does not include time spent deserializing the
.inv input files.

8.2 DtraceDiff utility

DtraceDiff is a utility for comparing data trace (.dtrace) files. It checks that the same
program points are visited in the same order in both files, and that the number, names,
types, and values of variables at each program point are the same. The differences are found
using a content-based, rather than text-based, comparison of the two files.

DtraceDiff stops by signalling an error when it finds a difference between the two data
trace files. (Once execution paths have diverged, continuing to emit record-by-record differ-
ences is likely to produce output that is far too voluminous to be useful.) It also signals an
error when it detects incompatible program point declarations or when one file is shorter
than the other.

DtraceDiff is invoked as follows:

java daikon.tools.DtraceDiff [flags] \

[declsfiles1] dtracefile1 [declsfiles2] dtracefile2

Corresponding declarations (.decls) files can optionally be specified on the command
line before each of the two .dtrace files. Multiple .decls files can be specified. If no .decls
file is specified, DtraceDiff assumes that the declarations are included in the .dtrace file
instead.

DtraceDiff supports the following Daikon command-line flags:

--help

Print usage message.

--config filename

Load the configuration settings specified in the given file. See Section 6.1 [Configurat-
ion options], page 55, for details.

--config_option name=value

Specify a single configuration setting. See Section 6.1 [Configuration options], page 55,
for details.

--ppt-select-pattern=ppt_regexp

Only process program points whose names match the regular expression.

--ppt-omit-pattern=ppt_regexp

Do not process program points whose names match the regular expression. This takes
priority over the --ppt-select-pattern argument.

--var-select-pattern=ppt_regexp

Only process variables (whether in the trace file or derived) whose names match the
regular expression.

--var-omit-pattern=var_regexp

Ignore variables (whether in the trace file or derived) whose names match the regular
expression, which uses Perl syntax. This takes priority over the --var-select-

pattern argument.
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DtraceDiff uses appropriate comparisons for the type of the variables in each program
point being compared. In particular:

• Hashcode (pointer or address) values may differ from one run of the same program
to the next, and there may not be a one-to-one mapping of hashcode values between
different program executions, so the comparison function only looks for null versus
non-null pointer values.

• Floating-point values are subject to roundoff error from printing and reading, so they
are compared with a “fuzzy” rather than exact equality test.

8.3 Reading dtrace files

If you wish to write a program that manipulates .dtrace files, then see See Section
“Reading dtrace files” in Daikon Developer Manual.
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9 Troubleshooting

This chapter gives solutions for certain problems you might have with Daikon. It also
tells you how to report bugs in a useful manner.

If, after reading this section and other parts of the manual, you are unable to solve your
problem, you may wish to send mail to one of the mailing lists (see Section 1.1 [Mailing
lists], page 1).

9.1 Problems running Daikon

You may find the debugging flags --debug and --dbg category useful if you wish to track
down bugs or better understand Daikon’s operation; see Section 4.5 [Daikon debugging
options], page 22. See Section 6.1 [Configuration options], page 55, for another way to
adjust Daikon’s output.

9.1.1 Can’t run Daikon: could not find or load main class, or
NoClassDefFoundError

An error such as one of these:

Error: Could not find or load main class mypackage.MyClass

Exception in thread "main" java.lang.NoClassDefFoundError: mypackage/MyClass

means that Java did not find the class mypackage.MyClass on your classpath. To cor-
rect the problem, you need to make sure that the directory or jar file that contains file
mypackage/MyClass.class is on your classpath. The classpath is passed as a command-
line argument such as -cp or -classpath; if no such command-line argument is passed, the
classpath is determined from your CLASSPATH environment variable.

As one specific example, if the error is one of these:

Error: Could not find or load main class daikon.Chicory

Exception in thread "main" java.lang.NoClassDefFoundError: daikon/Chicory

then you have not put daikon.jar on your classpath; see Chapter 2 [Installing Daikon],
page 2.

9.1.2 File input errors

If Daikon terminates with an error such as

Error at line 530 in file test.dtrace

and inspection of the indicated file at the indicated line number does not help you to discern
what is wrong, you may wish to re-run Daikon with the show_stack_trace option. The
exact syntax for this is:

--config_option daikon.Debug.show_stack_trace=true

The additional information in the resulting exception stack trace should indicate where
the problem is occurring.
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9.1.3 decl format errors

If Daikon terminates with an error such as

decl format ’2.0’ does not match previous setting at line 4 in file test.dtrace

it means you are using multiple .dtrace and/or .decls files and they are not all in the same
format. (See Section “Declaration version” in Daikon Developer Manual for information
about how to determine a data file’s format.)

The most probable cause is you are using at least one Java DynComp generated .decls

file (which defaults to version 1) and at least one .dtrace file (which defaults to version
2) as input to Daikon. (Note that the C/C++ front end Kvasir generates a version 2 file
.decls with the option --with-dyncomp.) The way to avoid this problem is to use your
Java DynComp generated .decls files as input to Chicory. The resulting .dtrace file will
contain the comparability values from the .decls file(s) and can then be used as input to
Daikon. Passing a .decls file to Chicory is described in Section 3.1.3 [Using DynComp
with Java programs], page 10, for example:

java daikon.Chicory --comparability-file=MyClass.decls-DynComp \

mypackage.MyClass arg1 arg2 arg3

9.1.4 Too much output

Sometimes, Daikon may produce a very large number of seemingly irrelevant properties
that obscure the facts that you were hoping to see. Which properties are irrelevant depends
on your current task, so Daikon provides ways for you to customize its output. See Daikon’s
command-line options (see Chapter 4 [Running Daikon], page 18), and the techniques for
enhancing its output (see Chapter 6 [Enhancing Daikon output], page 55), including its
configuration options (see Section 6.1 [Configuration options], page 55). The options for
the front ends — such as Chicory (see Section 7.1.1 [Chicory options], page 92) and Kvasir
(see Section 7.3.2 [Kvasir options], page 106) — give additional control.

Some irrelevant properties are over unrelated variables, like comparing an array index to
elements of the array. You should always use the DynComp tool (see Section 7.2 [DynComp
for Java], page 98, Section 7.3.3 [DynComp for C/C++], page 112) to avoid producing such
properties.

Some irrelevant properties are not relevant to the domain (e.g., bitwise operations). You
can exclude whole classes of unhelpful invariants from Daikon’s output (see Section 6.1.1.2
[Options to enable/disable specific invariants], page 56).

Some irrelevant properties are over variables you do not care about, or are in parts of
the program that you do not care about. You can exclude certain variables or procedures
from Daikon’s output (see Section 4.3 [Processing only part of the trace file], page 21 and
Section 6.1.1.4 [Options to enable/disable derived variables], page 72).

Some irrelevant properties are logically redundant — multiple properties express the
same facts in different ways. You can eliminate such properties from Daikon’s output (see
Section 4.2 [Options to control invariant detection], page 20).

Some irrelevant output indicates a deficiency in your test suite: your test suite is so small
that many arbitrary properties hold over it. This happens when the test suite does not
execute the code with a broad distribution of values, but only executes the code with a few
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specific values. This problem disappears if you augment your test suite so that it exercises
the code with more different values.

More generally, each property that Daikon produces is a true fact about how the target
program behaved. However, some of these facts would be true for any execution of the
target program, and others are accidents of the particular executions that Daikon observed.
Both types of facts may be useful, but for different reasons: the former tell you about your
program, and the latter tell you about your test suite (and how to improve it!).

9.1.5 Missing output invariants

Daikon may sometimes fail to output invariants that you expect it to output. Here are
some reasons why this may happen:

• There is a sample that violates the invariant

• The invariant is true, but does not pass one of the output filters (see Section 9.1.6 [True
invariants are not reported due to output filters], page 152).

• One or more of the variables in the invariant always has the same value as another
variable. Daikon only prints invariants over one variable (the leader) from the set of
equal variables (see Section 5.4.2 [Equal variables], page 30).

• The program point had no samples (see Section 9.1.7 [No samples], page 153).

There are two command-line options (--disc_reason and --track) that will display
information about invariants that are not printed. The --disc_reason option will indicate
why a particular invariant was discarded in most cases. If it does not provide enough
information, try the --track option which traces the invariant through all of Daikon’s
processing steps. See Section 4.5 [Daikon debugging options], page 22 for more information.

Note that in each case the description (class, variables, program point) of the invariant
must be entered carefully. It may be helpful to try the option on a similar invariant that is
printed to make sure that each is specified correctly.

9.1.6 True invariants are not reported due to output filters

Sometimes, Daikon does not report an invariant, even though Daikon has computed that
the invariant is true throughout the sample data. Daikon only reports invariants that satisfy
all the output filters (see Section 5.6 [Invariant filters], page 53).

Here, we discuss two common reasons for filtering: statistical justification, and implicat-
ion.

Daikon only reports a property if it is statistically justified, and Daikon needs to see
enough samples for the statistical test to work. So, there may be a property that is true,
but if too few samples were seen, then Daikon will not report it. In a longer trace, Daikon
would report the property. You can adjust Daikon’s confidence limit so that the property
is reported even in the short executions; see the command-line option --conf_limit. For
instance, supplying --conf_limit 0 causes all properties that have not been falsified to be
printed.

Daikon does not report redundant, or implied, invariants (see Section 5.4.1 [Redundant
invariants], page 30). The purpose of this is to avoid cluttering the output with facts that
add no new information. Here are a few examples:
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• Suppose that both i < j and i <= j are true. Daikon would report only i < j; Daikon
would not report i <= j, which is implied by what Daikon has reported. Further
suppose that a longer execution had a sample containing i=22, j=22. Only i <= j

would be true in the second execution, and Daikon would report it. (The invariant i
< j is an example of a false positive or overfitting in the first execution.)

• If two or more variables are found to be equal, then Daikon chooses one of them
(the leader) and only prints invariants over the leader, not the other variables (see
Section 5.4.2 [Equal variables], page 30).

9.1.7 No samples and no output

When Daikon produces no output, that is usually a result of it having no samples from
which to generalize. Use the --output_num_samples flag to Daikon to find out how many
samples it is observing. This section tells you how to debug your problem if the answer is
0, but you believe that there are samples in the file you are feeding to Daikon.

Using the normal dataflow hierarchy, Daikon explicitly processes :::EXIT program
points only. Other program points, such as :::ENTER program points, are processed
indirectly when their corresponding :::EXIT points are encountered. (You can disable this
behavior with the --nohierarchy switch to Daikon; see Section 4.2 [Options to control
invariant detection], page 20.) If no :::EXIT program points are present (perhaps every
execution threw an exception, you filtered out all the :::EXIT program points, or the
data trace is obtained from spreadsheet data instead of from a program execution), then
Daikon will not process any of the other program points, such as the :::ENTER program
points. You can make Daikon print information about unmatched procedure entries via
the ‘daikon.FileIO.unmatched_procedure_entries_quiet’ configuration option (see
Section 6.1.1.8 [General configuration options], page 77).

Another way to increase the number of invariants printed out is to lower the confidence
bound cutoff. Daikon only prints invariants whose confidence level is greater than the
bound specified by the --conf_limit option (see Section 4.2 [Options to control invariant
detection], page 20). In order to maximize the number of invariants printed, use --conf_

limit 0 to see all invariants Daikon is considering printing.

To try to determine why an invariant is not printed, use the --track to determine why
Daikon does not print an invariant (see Section 4.5 [Daikon debugging options], page 22).

9.1.8 No return from procedure

Daikon sometimes issues a warning that a procedure in the target program was entered
but never exited (that is, the target program abnormally terminated). In other words, the
.dtrace file contains more entry records than exit records for the given procedure. Some
procedures that were entered were never recorded to have exited: either they threw an
exception, skipping the instrumentation code that would have recorded normal termination,
or the target program’s run was interrupted. When this happens, the entry sample is
ignored; the rationale is that the particular values seen led to exception exit, were probably
illegal, and so should not be factored into the method preconditions.

In some cases, exceptional exit from a procedure can cause procedure entries and exits
(in the trace file) to be incorrectly matched up; if they are incorrectly matched, then the
orig(x) values may be incorrect. Daikon has two techniques for associate procedure exits
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with entries — the nonce technique and the stack technique. If a .dtrace file uses the
nonce technique, orig(x) values are guaranteed to be correct. If a .dtrace file uses the
stack technique, then incorrect orig(x) values are likely to occur. You can tell which
technique Daikon will use by examining the .dtrace file. If the second line of each entry
in the .dtrace file is ‘this_invocation_nonce’, then Daikon uses the nonce technique.
Otherwise, it uses the stack technique. Which technique is used is determined by the front
end, which creates the .dtrace file, and typically cannot be controlled by the user.

9.1.9 Unsupported class version

Daikon requires a Java 7 (or newer) JVM (see Section 2.2.1 [Requirements], page 3). An
error such as

Exception in thread "main" java.lang.UnsupportedClassVersionError:

daikon/Daikon (Unsupported major.minor version 51.0)

indicates that you are trying to run Daikon on an older JVM. You need to install a newer
version of Java in order to run Daikon.

9.1.10 Out of memory

If Daikon runs out of memory, generating a message like

Exception in thread "main" java.lang.OutOfMemoryError

<<no stack trace available>>

then it is likely that it has created more invariants than will fit in memory. The number of
invariants created depends on the number of program points and the number of variables
at each program point. In addition to the solutions discussed in Section 9.2.5.1 [Reducing
program points], page 158, you can try increasing the amount of memory available to Java
with the -Xmx argument to java. (This flag is JVM-specific; see your JVM documentation
for details. For instance, its name in JDK versions 1.2 and earlier is -mx.) However, the
value you use should be less than your system’s total amount of physical memory. Some
implementations of Java use a surprisingly small default, such as 64 megabytes; to permit
use of up to 2048 megabytes, you would run Java like so:

java -Xmx2048m ...

though you can use much more depending on the limitations of your JVM.

If you are using Chicory’s --daikon command-line argument to run Daikon, then you
must separately indicate the amount of memory available to Chicory and to Daikon (the
latter with Chicory’s --heap-size command-line argument). For example:

java -Xmx256m daikon.Chicory --daikon --heap-size=1600m \

mypackage.MyClass arg1 arg2 arg3

When using the Java HotSpot JVM, an additional parameter may need to be increased.
HotSpot uses a separately-limited memory region, called the permanent generation, for
several special kinds of allocation, one of which (interned strings) Daikon sometimes uses
heavily. It may be necessary to increase this limit as well, with the -XX:MaxPermSize=

option. For instance, to use 512 megabytes, of which at most 256 can be used for the
permanent generation, you would run Java like so:

java -Xmx512m -XX:MaxPermSize=256m
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Another possible problem is the creation of too many derived variables. If you supply
the --output_num_samples option to Daikon (see Section 4.1 [Options to control Daikon
output], page 18), then it will list all variables at each program point. If some of these
are of no interest, you may wish to suppress their creation. For information on how to do
that, see Section 6.1.1.4 [Options to enable/disable derived variables], page 72. Also see
Section 9.2.5.2 [Reducing variables], page 159 for other techniques.

Any output generated before the out-of-memory error is perfectly valid.

9.1.11 Simplify errors

The warning ‘Could not utilize Simplify’ and/or ‘Couldn’t start Simplify’ indi-
cates that the Simplify theorem-prover could not be run; this usually indicates that the
Simplify binary was not found on the user’s path.

If Simplify is not used, certain redundant (logically implied) invariants may appear in
Daikon’s output. The output is correct, but more verbose than it would be if you used
Simplify.

9.1.11.1 Installing Simplify

Obtain Simplify from http://kindsoftware.com/products/opensource/archives/

Simplify-1.5.5-13-06-07-binary.zip, and unzip the zip file.

Either place the appropriate binary on your path, named Simplify, or set set the
simplify.path property to its absolute pathname.

Note: Older versions of the Z3 theorem prover (http://z3.codeplex.com/) can replace
Simplify, but more recent versions do not support the Simplify syntax. In the future, it
would be nice to rewrite Daikon’s theorem-prover interface to use the SMT-LIB2 language,
so that a compatible solver like Z3 or CVC4 could be used. The main challenge to this is
writing the boilerplate code to output each different kind of invariant in SMT-LIB2 format.

9.1.12 Contradictory invariants

The invariants Daikon produces are all true statements about the supplied program exe-
cutions, so they should be mutually consistent. Sometimes, however, because of a bug or a
limitation in Daikon, contradictory invariants are produced.

One known problem involves object invariants. Daikon infers object invariants by ob-
serving the state of an object when its public methods are called. However, if an object
has publicly accessible fields that are changed by code outside the class, after which no
public methods are called, invariants about the state of the object as seen by other code
can contradict the class’s object invariants. A workaround is to allow changes to an object’s
state from outside the class only by way of public methods.

Besides confusing the user, contradictory invariants also cause trouble for the Simplify
theorem prover that implements the --suppress_redundant option. When the invariants
at a particular program point contradict each other or background information (such as
the types of objects), Simplify becomes unable to distinguish redundant invariants from
non-redundant ones.

The best solution in such cases is to fix the underlying cause of the contradictory invar-
iants, but since that is sometimes not possible, Daikon will try to work around the prob-
lem by avoiding the invariants that cause a contradiction. Daikon will attempt to find
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a small subset of the invariants that aren’t mutually consistent, and remove one, repeat-
ing this process until the remaining invariants are consistent. (Note that the invariants
are removed only for the purposes of processing by Simplify; this does not affect whether
they will be printed in the final output). While this technique can allow redundant invar-
iants to be found when they otherwise wouldn’t be, it has some drawbacks: the choice
of which invariant to remove is somewhat arbitrary, and the process of finding contrad-
ictory subsets can be time consuming. The removal process can be disabled with the
daikon.simplify.LemmaStack.remove_contradictions configuration option.

9.1.13 Method needs to be implemented

Daikon may produce output like the following (but all on one line):

method daikon.inv.binary.twoSequence.SubSequence.format_esc()

needs to be implemented:

this.theArray[0..this.topOfStack] is a subsequence of

orig(this.theArray[0..this.topOfStack])

This indicates that a particular invariant (shown on the last two lines above) cannot be
formatted using the current formatting. In this example, the invariant can be formatted
using Daikon’s default formatting (which is how it is shown above), but (as of April 2002)
Daikon cannot output it in ESC format, so Daikon prints the above message instead. The
message also shows exactly what Java method needs to be implemented to correct the
problem. You can ignore such messages, or else use an output formatting that can handle
those invariants. Annotate (see Section 8.1.4 [Annotate], page 140) automatically ignores
unformattable invariants.

9.1.14 Daikon runs slowly

If Daikon runs slowly, there are two general possible reasons:

• The front end, such as Chicory, took a long time to collect, then output, large amounts
of data about your program execution.

• It took a long time to analyze that data trace and infer invariants over it.

To understand which part is the bottleneck, you might want to separate the creation and
analysis of the trace file, so you can compare the time of each part. The next two sections
address each of these issues.

You may find command-line arguments like the following useful when debugging Daikon’s
performance:

--config_option daikon.Daikon.progress_delay=100

--show_progress --dbg daikon.init

For additional details on improving Daikon’s performance, see Section 9.1.10 [Out of
memory], page 154.

9.1.14.1 Slow creation of large trace files

Creating a trace can take a long time, because of the time to traverse and print the values
of many variables. Reducing the number of program points or variables can speed up both
creation and analysis of trace files. For instance, you might configure your front end to skip

DRAFT 1 June 2016



Chapter 9: Troubleshooting 157

certain procedures (helper procedures, libraries) or not to output certain variables (large
arrays or static variables). For details, see Section 9.2 [Large dtrace files], page 157.

9.1.14.2 Slow inference of invariants

Daikon’s runtime and space depend on the particular data that it analyzes. Informally,
invariant detection time can be characterized as

O((vars^3 * falsetime + trueinvs * testsuite) * procedures)

where vars is the number of variables at a program point, falsetime is the (small constant)
time to falsify a potential invariant, trueinvs is the (small) number of true invariants at
a program point, testsuite is the size of the test suite, and procedures is the number of
instrumented program points. The first two products multiply a number of invariants by
the time to test each invariant.

If there are many true invariants over an input, then Daikon continues to check them
all over the entire input. By contrast, if not many invariants are true, then Daikon need
no longer check them once they are falsified (which in practice happens quickly). Daikon
processes each procedure independently.

Another important factor affecting Daikon’s runtime is the number of variables. Because
invariants involve up to three variables each, the number of invariants to check is cubic
in the number of variables at a single program point. Derived variables (such as a[i],
introduced whenever there is both an array a and an integer i) can increase the number
of variables substantially. The daikon.derive.Derivation.disable_derived_variables
and individual daikon.derive.*.*.enabled configuration variables (see Section 6.1.1.4
[Options to enable/disable derived variables], page 72) may be used to disable derived
variables altogether or selectively, at the cost of detecting fewer invariants, especially over
sequences.

9.1.15 Bigger traces cause invariants to appear

Suppose that you run Daikon twice. The first time, you supply Daikon with traces T.
The second time you supply Daikon with traces T+T’ : either more files, or file(s) that are
supersets of the original one(s). The second Daikon execution may report fewer invariants,
more invariants, or a mix.

The second execution may report fewer invariants, because the additional data has elim-
inated overfitting (false positives). There may have been some accidental property of the
shorter executions that is not true in the longer ones.

Even though fewer invariants are true on the second execution, Daikon may report invar-
iants that it did not report on the first execution. The invariants were true on the first
execution, but were not reported by Daikon. Section 9.1.6 [True invariants are not reported
due to output filters], page 152 describes why this might happen.

9.2 Large data trace (.dtrace) files

Running instrumented code can create very large .dtrace files. This can be a problem
because writing the large files can slow the target programs substantially, or because the
large files may fill up your disk.

This section describes ways to work around this problem.
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9.2.1 Compressed .dtrace files

You can reduce file size by specifying a trace file name that includes .gz at the end. See the
--dtrace-file=FILENAME argument to Chicory or Kvasir, or the DTRACEFILE environment
variable. (Compression is the default if you don’t specify a filename.)

9.2.2 Save large files in a scratch directory

Sometimes, the problem is just filling up your user account with large files. You can
instead create .dtrace files in a temporary directory. Under Linux, this is often called
/scratch. Typically you should create a subdirectory called /scratch/$USER/.

9.2.3 Run Daikon online

The term online execution refers to running Daikon at the same time as the target
program. The front end supplies information to Daikon directly over a socket or pipe, with-
out writing any information to a file. This can avoid some I/O overhead, and it prevents
filling up your disk with files.

The Chicory front end supports online execution via use of the --daikon-online option
(see Section 7.1.1.3 [Chicory miscellaneous options], page 96). The Kvasir front end supp-
orts online execution via use of (normal or named) Linux pipes (see Section 7.3.7 [Online
execution], page 124).

In the future, Daikon may be able to output partial results as the target program is
executing.

9.2.4 Create multiple smaller data trace files

It is usually possible to create an .inv file equivalent to the one that Daikon would have
computed, had Daikon been able to process your entire program over its full test suite.
First, use the techniques below (see Section 9.2.5.1 [Reducing program points], page 158) to
split your .dtrace file into parts. Next, run Daikon on each resulting .dtrace file. Finally,
use the MergeInvariants tool to combine the resulting .inv files into one.

9.2.5 Record or read less information in the data trace file

You can record less information from each program execution, or you can make Daikon
read less information from the trace files. It’s usually most efficient to do the pruning as
early in the process as possible. For example, it is better to have the front end output less
information, rather than have Daikon ignore some of the information.

9.2.5.1 Reducing program points (functions)

Here are ways to compute invariants over a subset of the program points (functions) in
your program.

1. Make your front end instrument fewer files. This is often most applicable if you are
using a source-based front end.

2. You can instrument fewer procedures.

• With Chicory, use the --ppt-omit-pattern or --ppt-select-pattern options
(see Section 4.3 [Processing only part of the trace file], page 21, or Section 7.1.1
[Chicory options], page 92) to restrict which program points are traced. Running
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the instrumented program will result in a smaller .dtrace file that contains fewer
records.

• With Kvasir, use the --ppt-list-file option to specify a list of program points
that should be traced (see Section 7.3.4 [Tracing only part of a program], page 114
section for more details).

• You can remove some program points (functions) from your .dtrace file. The
trace-purge-fns.pl script takes as arguments a (Perl) regular expression and a
list of files. It modifies each file in place, removing every program point (function)
whose name matches the regular expression. The -v flag means to retain rather
than discard matching program points. For instance, to create two subparts of a
.dtrace file — one containing the getters and setters, and the other containing
all other functions — use the following commands:

cp myprog.dtrace myprog-setters.dtrace

trace-purge-fns.pl -v ’set|get’ myprog-setters.dtrace

cp myprog.dtrace myprog-non-setters.dtrace

trace-purge-fns.pl ’set|get’ myprog-non-setters.dtrace

• You can make Daikon ignore some program points. With the --ppt-select-

pattern=ppt_regexp flag (see Section 4.3 [Processing only part of the trace file],
page 21), only program points matching the regular expression are processed.
Likewise, the --ppt-omit-pattern=ppt_omit_regexp option causes program
points matching the regular expression to be ignored.

Also, the configuration variable daikon.Daikon.ppt_perc allows a percentage of
the program points to be processed. See Section 6.1.1.8 [General configuration
options], page 77, for details.

9.2.5.2 Reducing variables

Here are ways to compute invariants over a subset of the variables in your program. This
changes the resulting invariants, because invariants over the missing variables (including
any relationship between a missing variable and a retained variable) are not detected or
reported. For instance, you might remove uninteresting variables (or ones that shouldn’t
be compared to certain others) or variables that use a lot of memory (such as some arrays).

1. You can reduce the number of variables that are output by instrumented code — for
instance, output ‘a’ and ‘a.b’ but not ‘a.b.c’. Do this by reducing the class/structure
instrumentation depth.

• With Chicory, use the --nesting-depth=N option.

• With Kvasir, use the --struct-depth=N or the --nesting-depth=N option.

2. With Kvasir, you can either ignore all global and/or static variables with the --ignore-
globals and --ignore-static-vars options or manually specify a subset of variables
to trace using the --var-list-file option (see Section 7.3.4 [Tracing only part of a
program], page 114 for details)

3. You can pare down an existing .dtrace file using the trace-purge-vars.pl script.
Analogously to the trace-purge-fns.pl script, it removes certain variables from all
program points in a function (or retains them, with the -v flag). After running this
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command, you will need to edit the corresponding .decls file by hand to remove the
same variables.

4. You can make Daikon ignore certain variables rather than modifying the .dtrace file di-
rectly. Analogously with the --ppt-select-pattern and --ppt-omit-pattern flags,
the --var-select-pattern and --var-omit-pattern flags restrict which variables
Daikon processes. (See Section 4.3 [Processing only part of the trace file], page 21, and
Section 7.1.1 [Chicory options], page 92).

9.2.5.3 Reducing executions

Here are ways to run Daikon over fewer executions of each program point. (You cannot
combine the resulting invariants in order to obtain the same result as running Daikon over
all the executions.)

1. If you have multiple .dtrace files (perhaps resulting from multiple program runs), you
can run Daikon on just some of them.

2. You can terminate the instrumented program when it has created a sufficiently large
.dtrace file. If you interrupt the program while it is in the middle of writing a
record to the .dtrace file, the last record may be only partially written. Use the
daikon/scripts/trace-untruncate program to remove the last, possibly partial, rec-
ord from the file:

trace-untruncate myfile.dtrace

modifies myfile.dtrace in place to remove the last record.

Alternately, you can use the daikon/scripts/trace-untruncate-fast program. It
operates much faster on very large files. In order to use trace-untruncate-fast, you
must have already compiled it (see Chapter 2 [Installing Daikon], page 2).

3. You can cause the front end to record only a subset of executions of a given procedure,
rather than every execution. For example, Chicory’s --sample-start command-line
option does this (see Section 7.1.1.3 [Chicory miscellaneous options], page 96).

9.3 Problems with Chicory

Before reporting or investigating a problem with Chicory, always check that the program
executes properly when not being run under Chicory’s control.

For example, if a command such as

java daikon.Chicory DataStructures.StackArTester

fails with an error, then first try

java DataStructures.StackArTester

• If the latter command also fails, the problem is not with Chicory. First solve your Java
problem, then once again attempt to use Chicory.

• If the latter command does not fail, then you have found a bug in Chicory; please
report it if it is not already explained in this manual.

(If the error is “couldn’t find or load main class” and the class that cannot be found
is in Chicory itself, then there is not a bug in Chicory. Rather, you have failed to put
daikon.jar on the classpath when running Chicory, as described in Section 2.1 [Simple
installation], page 2.)
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9.3.1 BCEL must be in the classpath

If Chicory throws an error such as the following:

BCEL must be in the classpath. Normally it is found in daikon.jar.

then the problem is most likely that your classpath does not contain daikon.jar. If you are
running a Daikon version post 5.2.20, then it could be caused by your classpath containing
a previous version of daikon.jar or plume.jar.

9.3.2 VerifyError constant pool index error

If Chicory throws an error such as the following:

Exception in thread "main" java.lang.VerifyError:

(class: ps1/PublicTest, method: <init> signature: (Ljava/lang/String;)V)

Illegal constant pool index

then the problem is most likely that your classpath contains a version of the BCEL library
that is not compatible with Java 7. The incompatible version might appear in bcel.jar,
in Java’s rt.jar, or elsewhere. You should either remove that version of BCEL from your
classpath, or you should ensure that it appears after daikon.jar, which contains its own
version of BCEL. (If you are running Daikon from sources rather than from daikon.jar,
then ensure that $DAIKONDIR/java/lib/bcel.jar is the first version of BCEL on your
classpath.)

9.3.3 Attempted duplicate class definition error

If Chicory throws an error such as the following:

Exception in thread "main" java.lang.LinkageError:

java.lang.LinkageError: loader (instance of sun/misc/Launcher$AppClassLoader):

attempted duplicate class definition for name: "SquarePanel"

then the problem is most likely that some method in your program uses Java runtime
services to set up an additional thread that can get invoked asynchronously. One
example is using the java.lang.SecurityManager class to set up a SecurityManager

via System.setSecurityManager. The easiest way to work around this is to use the
--ppt-omit-pattern option to Chicory. After you have located the problem method,
rerun Chicory with the additional option:

--ppt-omitpattern=MyPackage.MyProblemMethod

9.4 Reporting problems

If you have any questions, can suggest ways to improve the documentation,
find bugs in the system, or have suggestions for its improvement, please file a
bug report at https: / / github . com / codespecs / daikon / issues or send email to
daikon-developers@googlegroups.com. (If you can’t figure out how to do something or
do not understand why Daikon works the way it does, that is a bug, too — in the Daikon
documentation. Please report those as well.) We will try to assist you and to correct any
problems, so please don’t hesitate to ask for help or report difficulties. Additionally, if you
can contribute enhancements or bug fixes, those will be gratefully accepted.

In order for us to assist you, please provide a complete and useful bug report. Your bug
report must provide all the information that is required in order to replicate the bug and
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verify that our fix corrects the problem. If you do not provide complete information, we
will not be able to assist you.

Your bug report should include:

• the version of Daikon, which appears in the file daikon/README.txt and is also printed
when you run Daikon. If you are not using the most recent version, download a newer
version from http://plse.cs.washington.edu/daikon/ to see whether your problem
has already been corrected. If you are using a modified version of Daikon, you should
verify that the problem exists in Daikon as distributed.

• a description of exactly what you did (in sufficient detail for others to reproduce the
problem), exactly what happened, and what you expected to happen instead. One
good way to describe what you did is a list of commands that, if executed, reproduces
your error. A good way to show what happened is a transcript of execution of all of
the commands. (A list of commands and a transcript are much more useful than a
vague description; please don’t give vague English when you can supply a more precise
specification instead. Also, please don’t give screenshots of a command terminal, which
are hard to read and reproduce; instead, cut and paste the contents.) It is crucial that
you not omit steps in your report. For example, include instructions for installing
your software and all customizations to the software or your environment, including
all relevant environment variables. Please do not force the developers to speculate
about what you did; that would be a waste of their time, since you already have the
knowledge.

• input files that permit the problem to be replicated (by following the detailed steps
in your bug report). The most important thing is the original, uninstrumented source
files (e.g., .java), and any inputs/tests used when you ran the program. It is also
helpful to include instrumented source files, .decl files, and .dtrace files. You may
include .inv files, but as an adjunct rather than a replacement for other files: .inv

files are binary in format, hard to inspect, and the format may change from one version
of Daikon to another.

• the JDK or JRE version (e.g., the complete output of ‘java -version’), and operating
system and revision you are using (e.g., Debian stable, Windows XP service pack 2,
etc)

• any other information that you consider relevant.

When users provide an inadequate bug report, it is frequently more difficult for us to
reproduce an error than to correct it. If you make it easy for us to reproduce and verify the
problem, then it is much more likely to be corrected. Thanks for helping us to help you!

You may also wish to take advantage of the Daikon mailing lists (see Section 1.1 [Mailing
lists], page 1).

9.5 Further reading

More information on Daikon can be found in the Daikon Developer Manual (see Section
“Introduction” in Daikon Developer Manual). For instance, the Daikon Developer Manual
indicates how to extend Daikon with new invariants, new derived variables, and front ends
for new languages. It also contains information about the implementation and about how
to debug.
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You may find discussions on the mailing lists (see Section 1.1 [Mailing lists], page 1) help-
ful. The mailing list archives may contain helpful information, but we strive to incorporate
that information in this manual so that you don’t have to search the archives as well.

For further reading, see the list of publications at the Daikon homepage, http://plse.
cs.washington.edu/daikon/pubs/.
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10 Details

The Daikon invariant detector is named after an Asian radish. “Daikon” is pronounced
like the combination of the two one-syllable English words “die-con”.

More information on Daikon can be found in the Daikon Developer Manual (see Section
“Introduction” in Daikon Developer Manual). For instance, the Daikon Developer Manual
indicates how to extend Daikon with new invariants, new derived variables, and front
ends for new languages. It also contains information about the implementation and ab-
out debugging flags.

10.1 History

This manual describes Daikon version 5.3.4, released June 1, 2016. A more detailed list
of revisions since mid-2001 can be found in file daikon/doc/CHANGES in the distribution;
this section gives a high-level view of the package’s history.

There have been four major releases of Daikon, with different features and capabilities.
User experiences and technical papers should be judged based on the version of Daikon
current at the time of use.

Daikon 1 was written in the Python programming language in 1998. It included front
ends for C, Java, and Lisp. The C front end was extremely limited and failed to op-
erate correctly on all C programs: sometimes it suffered a segmentation fault while in-
strumenting a target program, and even when that did not happen, sometimes the instrum-
ented program segmentation-faulted while running. The Lisp front end operated correctly
on all Lisp programs, but only instrumented certain common constructs, leaving other
language features uninstrumented. The Java front end was reasonably reliable. The Lisp
front end instrumented procedure entries, exits, and loop heads; the C front ends instrum-
ented only procedure entries and exits; and the Java front end instrumented program points
for object invariants as well as procedure entries and exits. Daikon 1 and its Lisp front end
were only removed from Daikon version control repository in November 2010, though they
had long been obsolete.

Daikon 2 was a complete rewrite in the Java programming language and was the first
version to contain a substantive manual. Daikon 2 uses the same source-based Java front
end as did Daikon 1, though with certain enhancements. Its C front end was rewritten
from scratch; it instruments only procedure entries and exits. A front end also exists for
the Input Output Automaton programming language, but is not included in the Daikon
distribution.

Daikon 3 is a redesign of the invariant detection engine to work incrementally — that is,
to examine each sample (execution of a program point) once, then discard it. By contrast,
Daikon 1 and Daikon 2 made multiple passes over the data. This simplified their algorithms
but required storing all the data in memory at once, which was prohibitive, particularly
since data trace files may be gigabytes in size. Daikon 3 also introduces the idea of a
dataflow hierarchy, a way to relate and connect program points based on their variables.

Daikon 4 includes new binary front ends for Java and for C. These front ends make Daikon
much easier to use. Daikon 4 makes .decls files optional; program point declarations are
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permitted to appear in .dtrace files. Daikon 4 is released under more liberal licensing
conditions that place no restrictions on use.

Daikon 5 adds a new front end (Celeriac) for .NET languages (C#, F#, and Visual
Basic). The underlying Valgrind was updated and much work done to ensure Daikon works
properly on the latest versions of Linux. The Chicory front end for Java was modified to
support Java 7. Daikon releases were moved from MIT to the University of Washington.
The bug tracker was moved to Google Code, and mailing lists moved to Google Groups.

10.2 License

Copyright c© 1998-2008 Massachusetts Institute of Technology

Copyright c© 2008-2014 University of Washington

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the “Software”), to deal in the Software with-
out restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

The names and trademarks of copyright holders may not be used in advertising or pub-
licity pertaining to the software without specific prior permission. Title to copyright in
this software and any associated documentation will at all times remain with the copyright
holders.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON IN-
FRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

10.2.1 Library licenses

10.2.1.1 getopt license

Daikon uses the Java port of the GNU getopt library, which is copyright 1998 Aaron
M. Renn. The getopt library is free software, and may be redistributed or modified under
the terms of the GNU Library General Public License version 2. A copy of this license is
included with the Daikon distribution as the file doc/gnu-gpl-2.txt.

10.2.1.2 JUnit license

Daikon’s unit tests use the JUnit testing framework, which is governed by the Common
Public License, version 1.0. JUnit is provided on an “as is” basis, without warranties or con-
ditions of any kind, either express or implied including, without limitation, any warranties
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or conditions of title, non-infringement, merchantability or fitness for a particular purp-
ose. Neither the Daikon developers nor the authors of the JUnit framework shall have any
liability for any direct, indirect, incidental, special, exemplary, or consequential damages
(including without limitation lost profits), however caused and on any theory of liability,
whether in contract, strict liability, or tort (including negligence or otherwise) arising in
any way out of the use or distribution of JUnit or the exercise of any rights granted in the
Common Public License, even if advised of the possibility of such damages. Those portions
of JUnit that appear in the Daikon distribution may be redistributed under the same terms
as Daikon itself; this offer is made by the Daikon developers exclusively and not by any
other party. The Common Public License is included with the Daikon distribution as the
file java/junit/cpl-v10.html.

10.2.2 Front end licenses

Note that the front ends discussed in this manual are separate programs, and some are
made available under different licenses. Because the front ends are separate programs not
derived from the Daikon invariant detection tool, you are neither required nor entitled to
use the Daikon invariant detector itself under these other licenses.

10.2.2.1 dfepl license

The Daikon Perl front end dfepl may be used and distributed under the regular Daikon
license or, at your option, either the GNU General Public License or the Perl Artistic License
(that is, under the same terms as Perl itself).

10.2.2.2 Kvasir license

The Daikon C/C++ front end Kvasir is based in part on the Valgrind dynamic program
supervision framework, copyright 2000-2004 Julian Seward, the Sparrow Valgrind tool,
copyright 2002 Nicholas Nethercote, the MemCheck Valgrind tool, copyright 2000-2004 Julian
Seward, the readelf program of the GNU Binutils, copyright 1998-2003 the Free Software
Foundation, Inc., the GNU C Library, copyright 1995, 1996, 1997, 2000 the Free Software
Foundation, Inc., and the Diet libc, copyright Felix von Leitner et al. Kvasir is free
software; you can redistribute it and/or modify it under the terms of the GNU General Pub-
lic License as published by the Free Software Foundation; either version 2 of the License, or
(at your option) any later version. Kvasir is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details. You should have received a copy of the GNU General Public License along
with Kvasir, in the file kvasir/COPYING; if not, write to the Free Software Foundation, Inc.,
51 Franklin St., Fifth Floor, Boston, MA 02110-1301, USA.

10.2.2.3 Celeriac license

The Daikon .NET front end Celeriac is Copyright (c) 2012 by Kellen Donohue. Portions
of Celeriac are covered by the Microsoft Public License, this is at the top of every such file.
Otherwise the following license is in effect:

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
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without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies
or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL THE AUTHORS
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

10.3 Mailing lists reminder

If you use Daikon, please subscribe to the ‘daikon-announce’ and ‘daikon-discuss’
mailing lists (see Section 1.1 [Mailing lists], page 1). The ‘daikon-announce’ list will inform
you of new versions, enhancements, and bug fixes. On the ‘daikon-discuss’ mailing list,
you can obtain help from, and offer help to, other users. We would also appreciate a brief
description of how you are using Daikon, sent to daikon-developers@googlegroups.com.
We are curious about how users exploit Daikon, and we are eager for anecdotes about its
successes and failures, so that we can make Daikon more effective for its users.

10.4 Credits

The following individuals have contributed to Daikon: Yuriy Brun, Jake Cockrell, David
Cok, Forrest Coward, Adam Czeisler, Brian Demsky, Alan Donovan, Nii Dodoo, Kellen
Donohue, Alan Dunn, Michael Ernst, Eric Fellheimer, Antonio Garcia-Dominguez, William
Griswold, Florian Gross, Philip Guo, Melissa Hao, Michael Harder, Dieter von Holten,
Greg Jay, Josh Kataoka, Lee Lin, Allen Liu, Sandra Loosemore, Vikash Mansinghka,
Stephen McCamant, Samir Meghani, Benjamin Morse, Jelani Nelson, Ryan Newton, Jeremy
Nimmer, Toh Ne Win, David Notkin, Carlos Pacheco, Jeff Perkins, Jaime Quinonez, Mark
Roberts, Robert Rudd, Alexandru Salcianu, Todd Schiller, Kathryn Shih, Eric Spishak,
Laure Thompson, Matthew Tschantz, Iuliu Vasilescu, Chen Xiao, Tao Xie, Jeff Yuan.

Craig Kaplan carved the Daikon logo.

The feedback of Daikon users has been very valuable. We are particularly grateful to
B. Thomas Adler, Rich Angros, Tadashi Araragi, Seung Mo Cho, Christoph Csallner,
Dorothy Curtis, Juan Pablo Galeotti, Diego Garbervetsky, Mangala Gowri, Madeline Har-
dojo, Engelbert Hubbers, Nadya Kuzmina, Scott McMaster, Charles O’Donnell, Alex Orso,
Rodric Rabbah, Manos Renieris, Rosie Wacha. Many others have also been generous with
their feedback, for which we are also grateful.

If your name has been inadvertently omitted from this section, please let us know so we
can correct the oversight.
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Financial support has been provided by: National Science Foundation (NSF), Defense
Advanced Research Projects Agency (DARPA), ABB, Edison Design Group, IBM, NTT,
MIT Oxygen Project, Raytheon, Toshiba.

10.5 Citing Daikon

If you wish to cite Daikon in a publication, we recommend that you reference one
of the scholarly papers listed at http://plse.cs.washington.edu/daikon/pubs/ #

invariant-detection in lieu of, or in addition to, referencing this manual and the Daikon
website (http://plse.cs.washington.edu/daikon/).
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