
Daikon Invariant Detector

Developer Manual

Daikon version 5.8.20

May 14, 2024

Copyright c© 1998-2020

i

Table of Contents

1 Introduction . 1

2 Extending Daikon . 2
2.1 Compiling Daikon . 2

2.1.1 Requirements for compiling Daikon . 2
2.2 Source code (version control repository) . 2
2.3 Using Eclipse . 2
2.4 New invariants . 3
2.5 New derived variables . 4
2.6 New formatting for invariants . 4
2.7 New front ends . 4

2.7.1 Example instrumented Java program . 4
2.7.2 Instrumenting C programs . 6

2.8 New suppressors . 8
2.9 Reading dtrace files . 9
2.10 System.exit . 9

3 Debugging Daikon . 10
3.1 Track logging . 10

3.1.1 Adding track logging . 11
3.1.2 Track log output . 11

4 Daikon internals . 12
4.1 Avoiding work for redundant invariants . 12
4.2 Dataflow hierarchy . 12
4.3 Equality optimization . 13

5 Testing . 14
5.1 Unit testing . 14

5.1.1 Invariant format testing . 14
5.1.2 Sample Testing . 16

5.1.2.1 Assertions . 16
5.1.2.2 Example file . 16

5.2 Regression tests . 17
5.2.1 Kvasir regression tests . 17
5.2.2 Adding regression tests . 17

6 Editing Daikon source code . 19
6.1 Eclipse setup . 19

6.1.1 Start up Eclipse . 19
6.1.2 Work on existing coding projects . 19

6.1.2.1 Import an existing project . 19
6.1.2.2 Importing a different existing project . 19

6.1.3 Interaction with external tools . 20
6.1.4 Using the Eclipse debugger . 20

ii

6.1.5 Using Git with Eclipse . 20
6.2 Editing daikon.texinfo . 20

7 Making a distribution (making a release) 22
7.1 Directory layout requirements . 22
7.2 Distribution setup instructions . 22
7.3 Getting the latest version of dependencies . 22
7.4 The day before the release . 23
7.5 Steps for making the distribution . 24

8 Analyzing historical versions of Daikon 29
8.1 Branches . 29

Appendix A File formats . 31
A.1 Declarations in a separate file . 31
A.2 File format conventions . 31
A.3 Declarations . 32

A.3.1 Declaration-related records . 32
A.3.1.1 Declaration version . 32
A.3.1.2 Input-language declaration . 32
A.3.1.3 Variable comparability . 32
A.3.1.4 ListImplementors declaration . 32

A.3.2 Program point declarations . 33
A.3.3 Variable declarations . 34

A.4 Data trace records . 37
A.4.1 Nonsensical values for variables . 38
A.4.2 Variables that do not appear in trace records . 38

A.5 Example files . 38
A.5.1 Example declaration file . 39
A.5.2 Example data trace file . 42

A.6 Version 1 Declarations . 45
A.6.1 V1 Program point declarations . 45
A.6.2 Program point name format specification . 47
A.6.3 V1 VarComparability declaration . 48
A.6.4 V1 ListImplementors declaration . 48

General Index . 49

Chapter 1: Introduction 1

1 Introduction

This is the developer manual for the Daikon invariant detector. See:
http://plse.cs.washington.edu/daikon/.

For information about using Daikon, see the Daikon User Manual. This manual is intended for
those who are already familiar with the use of Daikon, but wish to customize or extend it.

Additional information can be found in the technical papers available from
http://plse.cs.washington.edu/daikon/pubs/.

http://plse.cs.washington.edu/daikon/
http://plse.cs.washington.edu/daikon/download/doc/daikon.html#Introduction
http://plse.cs.washington.edu/daikon/pubs/

Chapter 2: Extending Daikon 2

2 Extending Daikon

This chapter describes how to customize or modify Daikon.

2.1 Compiling Daikon
To compile Daikon, type make in $DAIKONDIR/java/ or any of its subdirectories. Alternately,

type make -C $DAIKONDIR compile. To create the daikon.jar file, type make -C $DAIKONDIR
daikon.jar.

The distribution includes daikon.jar and compiled .class files, so you do not need to compile
them yourself unless you make changes.

For more information about compiling Daikon, see the comments in the Makefiles.

2.1.1 Requirements for compiling Daikon

Before compiling Daikon, you need to install some dependencies (that is, software used to build
Daikon). For Rocky Linux and Ubuntu, you can find the commands to install these dependencies
in file $DAIKONDIR/scripts/Dockerfile-OSNAME-jdkN-plus. For other operating systems, use
similar commands.

Note that Kvasir, the Daikon front end for the C language (see Section “Kvasir” in Daikon User
Manual), does not work on Mac OS.

The Daikon build process uses the C preprocessor cpp to convert each .jpp file in the distribution
into multiple .java files, which are then compiled. If you have a C compiler, you almost certainly
have cpp.

2.2 Source code (version control repository)
The Daikon git repository is located on GitHub; see https://github.com/codespecs/daikon/

.

After making a local clone, see Section 2.1 [Compiling Daikon], page 2, for instructions on how
to compile Daikon.

2.3 Using Eclipse
[To be improved.]

Here is one way to use Eclipse to edit Daikon.

First, make sure that Daikon builds cleanly from the command line.

File > Import > General > Existing Projects into Workspace

Choose the java directory of your Daikon checkout

Project > properties > Java build path: libraries : add external jars everything in the lib/
directory, plus also the tools.jar file in the lib/ directory of your JDK. (I’m not sure why, but
add jars doesn’t show all .jar files in the directory.)

Source: add Daikon, remove Daikon/src. Default output folder: change from Daikon/bin to
Daikon.

https://github.com/codespecs/daikon/blob/master/scripts/Dockerfile-rockylinux-jdk17-plus
https://github.com/codespecs/daikon/blob/master/scripts/Dockerfile-ubuntu-jdk17-plus
https://github.com/codespecs/daikon/
https://github.com/codespecs/daikon/

Chapter 2: Extending Daikon 3

2.4 New invariants
You can easily write your own invariants and have Daikon check them, in addition to all the other

invariants that are already part of Daikon. Adding a new invariant to Daikon requires writing one
Java class, as explained below.

• If you are willing to edit the Daikon source code, you should define the invariant in Daikon’s
source code, in a subdirectory of java/daikon/inv/. Then, edit method Daikon.setup_
proto_invs to call the new invariant’s get_proto method and recompile Daikon.

• If you do not wish to edit the Daikon source code, then compile the new invariant and put
its .class file on your classpath. Then, invoke Daikon with the --user_defined_invariant
command-line argument (see Section “Options to control invariant detection” in Daikon User
Manual).

The file java/daikon/inv/unary/scalar/Positive.java in the Daikon distribution contains a
sample invariant. This invariant is true if the variable is always positive (greater than zero). This
invariant is subsumed by other invariants in the system; it is provided only as a pedagogical example.
To enable the invariant, comment out the appropriate line in Daikon.setup_proto_invs(), then
recompile Daikon.

A Java class defining an invariant is a concrete subclass of one of the direct subclasses of
UnaryInvariant, BinaryInvariant, or TernaryInvariant. A complete list of invariants appears
in the body of Daikon.setup_proto_invs().

Daikon’s invariants are first instantiated, then are presented samples (tuples of values for all the
variables of interest to the invariant; this might be a 1-tuple, a 2-tuple, or a 3-tuple) in turn. If any
sample falsifies the invariant, the invariant destroys itself. All remaining invariants at the end of
the program run can be queried for their statistical confidence, then reported as likely to be true.

You need to implement the abstract methods of Invariant that are not defined in one of the
subclasses listed above. You also need to define a constructor and a static method:

protected InvName(PptSlice ppt)
Constructor for class InvName. Should only be called from instantiate_dyn. Its
typical implementation is

super(ppt);

public static InvName get_proto()
Returns the prototype invariant used to create other invariants. Its typical implemen-
tation is

if (proto == null)
proto = new InvName(null);

return (proto);

Methods that need to be overridden that are defined in a subclass of ‘Invariant’ include:

public InvariantStatus check_modified(..., int count)
public InvariantStatus add_modified(..., int count)

Determines whether the invariant is true for a sample (a tuple of values).

You will eventually want to override one or more of these methods (see Section 2.6 [New format-
ting for invariants], page 4):

public String format()
public String repr()
public String format_using(OutputFormat format)

Returns a high-level printed representation of the invariant, for user output.

http://plse.cs.washington.edu/daikon/download/api/daikon/inv/unary/UnaryInvariant.html
http://plse.cs.washington.edu/daikon/download/api/daikon/inv/binary/BinaryInvariant.html
http://plse.cs.washington.edu/daikon/download/api/daikon/inv/ternary/TernaryInvariant.html
http://plse.cs.washington.edu/daikon/download/api/daikon/inv/Invariant.html

Chapter 2: Extending Daikon 4

2.5 New derived variables
A derived variable is an expression that does not appear in the source code as a variable, but

that Daikon treats as a variable for purposes of invariant detection. For instance, if there exists
an array ‘a’ and an integer ‘i’, then Daikon introduces the derived variable ‘a[i]’. This permits
detection of invariants over this quantity.

(Describing how to create new variety of derived variable is still to be written. For now, see the
derived variables that appear in the Java files in directory $DAIKONDIR/java/daikon/derive/.)

2.6 New formatting for invariants
Daikon can print invariants in multiple formats (see Section “Invariant syntax” in Daikon User

Manual).

To support a new output format, you need to do two things:

• In daikon.inv.Invariant.OutputFormat, add a new static final field and also update the
get method.

• In every subclass of Invariant, edit the format_using method to handle the new
OutputFormat.

2.7 New front ends
A front end for Daikon converts data into a form Daikon can process, producing files in Daikon’s

input format — data trace declarations and records. For more information about these files, see
Appendix A [File formats], page 31.

The data traces can be obtained from any source. For instance, front ends have been built for
stock data, weather forecasts, truck weight data, and spreadsheet data (see Section “convertcsv.pl”
in Daikon User Manual), among others. More often, users apply a programming language front
end (also called an instrumenter) to a program, causing executions of the program to write files in
Daikon’s format. (For information about existing front ends, see Section “Front ends and instru-
mentation” in Daikon User Manual.) When a general front end is not available, it is possible to
manually instrument a specific program so that it writes files in Daikon’s format. The resulting
instrumented program is very similar to what an instrumenter would have created, so this section
is relevant to both approaches.

Conceptually, a front end instrumenter has two tasks. Suppose you want to infer invariants at
a program point (say, a line of code or the entry or exit from a procedure). The front end must
create a declaration (see Section A.3 [Declarations], page 32) that lists the variables in scope at
that program point. Every time that program point is executed, the program must output a data
trace record (see Section A.4 [Data trace records], page 37). A front end can make the program
output a data trace record by inserting a printf (or similar) statement that outputs the current
values of the variables of interest.

2.7.1 Example instrumented Java program

This section gives an example of how an instrumenter for Java might work; other languages are
analogous. Suppose we wish to instrument file Example.java.

class Example {
// Return either the square of x or the square of (x+1).
int squar(int x, boolean b) {
if (b)

x++;
return x*x;

Chapter 2: Extending Daikon 5

}
}

The .decls file might look like the following.

DECLARE
Example.squar:::ENTER
x
int
int
1
b
boolean
int
2

DECLARE
Example.squar:::EXIT
x
int
int
1
b
boolean
int
2
return
int
int
1

The instrumented .java file might look like the following. This example does not compute the
“modified bits”, but simply sets them all to 1, which is a safe default.

class Example {
static {
daikon.chicory.Runtime.setDtraceMaybe("daikon-output/StackAr.dtrace");

}

// Return either the square of x or the square of (x+1).
int squar(int x, boolean b) {
synchronized (daikon.chicory.Runtime.dtrace) {

daikon.chicory.Runtime.dtrace.println();
daikon.chicory.Runtime.dtrace.println("Example.squar:::ENTER");
daikon.chicory.Runtime.dtrace.println("x");
daikon.chicory.Runtime.dtrace.println(x);
daikon.chicory.Runtime.dtrace.println(1); // modified bit
daikon.chicory.Runtime.dtrace.println("b");
daikon.chicory.Runtime.dtrace.println(b ? 1 : 0);
daikon.chicory.Runtime.dtrace.println(1); // modified bit

}

if (b)
x++;

Chapter 2: Extending Daikon 6

int daikon_return_value = x*x;
synchronized (daikon.chicory.Runtime.dtrace) {
daikon.chicory.Runtime.dtrace.println();
daikon.chicory.Runtime.dtrace.println("Example.squar:::EXIT");
daikon.chicory.Runtime.dtrace.println("x");
daikon.chicory.Runtime.dtrace.println(x);
daikon.chicory.Runtime.dtrace.println(1); // modified bit
daikon.chicory.Runtime.dtrace.println("b");
daikon.chicory.Runtime.dtrace.println(b ? 1 : 0);
daikon.chicory.Runtime.dtrace.println(1); // modified bit
daikon.chicory.Runtime.dtrace.println("return");
daikon.chicory.Runtime.dtrace.println(daikon_return_value);
daikon.chicory.Runtime.dtrace.println(1); // modified bit

}

return daikon_return_value;
}

}

(Daikon’s Java front end, Chicory, does not actually insert instrumentation into the Java source
code of your program. Rather, it instruments the bytecode as it is loaded into the JVM. This is
more efficient, and it avoids making any changes to your .java or .class files. We have shown
an example of Java source code instrumentation because that is simpler to explain and understand
than the bytecode instrumentation.)

2.7.2 Instrumenting C programs

Daikon comes with a front end for the C language: Kvasir (see Section “Kvasir” in Daikon User
Manual). Kvasir only works under the Linux operating system, and it works only on “x86” (Intel
386, 486, 586, 686 compatible) and “x86-64” (AMD64, EM64T compatible) processors.

You may wish to infer invariants over C programs running on other platforms; for instance, you
want a robust C front end that works under Microsoft Windows. This section will help you to
either write such a front end or to hand-instrument your program to produce output that Daikon
can process.

We welcome additions and corrections to this part of the manual. And, if you write a C instru-
menter that might be of use to others, please contribute it back to the Daikon project.

A front end for C (or any other language) performs two tasks. It determines the names of all
variables that are in scope at a particular program point, and it prints the values of those variables
each time the program point executes.

Determining the names of the variables is straightforward. It requires either parsing source
code or parsing a compiled executable. In the latter case, the variables can be determined from
debugging information that the compiler places in the executable.

The challenge for C programs is determining the values of variables at execution time: for each
variable, the front end must determine whether the variable’s value is valid, and how big the value
is.

A front end should print only variables that have valid values. Examples of invalid values are
variables that have not yet been initialized and pointers whose content has been deallocated. (A
pointer dereference, such as ‘*p’ or ‘p->field’, can itself be to uninitialized and/or deallocated
memory.) Invalid values should be printed as ‘nonsensical’ (see Section A.4 [Data trace records],
page 37).

Chapter 2: Extending Daikon 7

It is desirable to print ‘nonsensical’ rather than an invalid value, for two reasons. First, out-
putting nonsense values can degrade invariant detection; patterns in the valid data may be masked
by noise from invalid values. Second, an attempt to access an invalid value can cause the instru-
mented program to crash! For instance, suppose that pointer ‘p’ is not yet initialized — the pointer
value refers to some arbitrary location in memory, possibly even an address that the operating sys-
tem has not allocated to the program. An attempt to print the value of ‘*p’ or ‘p->field’ will
result in a segmentation fault when ‘*p’ is accessed. (If you choose never to dereference a pointer
while performing instrumentation, then you do not need to worry about invalid references. How-
ever, you will be unable to output any fields of a pointer to a struct or class, making your front
end less useful. You will still be able to output fields of a regular variable to a struct or class, but
most interesting uses of structs and classes in C and C++ are through pointers.)

C relies on the programmer to remember which variables are valid, and the programmer must take
care never to access invalid variables. Unfortunately, there is no simple automatic way to determine
variable validity for an arbitrary C program. (Languages with automatic memory management,
such as Java, do not pose these problems. All variables always have an initial value, so there
is no danger of printing uninitialized memory, though the initial value may not be particularly
meaningful. Because pointed-to memory is never deallocated, all non-null pointers are always
valid, so there is no danger of a segmentation fault.)

An instrumenter needs information about validity of variable values. This could be obtained from
the programmer (which requires work on the part of the user of Daikon), or obtained automatically
by creating a new run-time system that tracks the information (which requires a more sophisticated
front end).

In addition to determining which variables are uninitialized and which pointers are to allocated
memory, there are additional problems for a C front end. For example, given a char pointer ‘*c’,
does it point to a single character, or to an array of characters? If it points to an array of characters,
how big is that array? And for each element of the array, is that element initialized or not?

The problem of tracking C memory may seem daunting, but it is not insurmountable. There
exist many tools for detecting or debugging memory errors in C, and they need to perform exactly
the same memory tracking as a Daikon front end must perform. Therefore, a Daikon front end
can use the same well-known techniques, and possibly can even be built on top of such a tool. For
instance, one C front end, named Kvasir, is built on top of the Valgrind tool (https://valgrind.
org/), greatly reducing the implementation effort. Valgrind only works under Linux, but a C front
end for another platform could build on a similar tool; many other such tools exist.

There are two basic approaches to instrumenting a C program (or a program in any other
language): instrument the source code, or instrument a compiled binary representation of the
program. In each case, additional code that tracks all memory allocations, deallocations, writes,
and reads must be executed at run time. Which approach is most appropriate for you depends on
what tools you use when building your C instrumentation system.

In some cases, it may not be necessary to build a fully general C instrumentation system. You
may be able to craft a smaller, simpler extension to an existing program — enabling that program
(only) to produce files for Daikon to analyze.

For instance, many programs use specialized memory allocation routines (customized versions of
malloc and free), in order to prevent or detect memory errors. The information that such libraries
collect is often sufficient to determine which variable values should be printed, and which should
be suppressed in favor of printing ‘nonsensical’ instead.

The presence of memory errors — even in a program that appears to run correctly — makes it
much harder to create Daikon’s output. Therefore, as a prerequisite to instrumenting a C program,
it is usually a good idea to run a memory checker on that program and to eliminate any memory
errors.

https://valgrind.org/
https://valgrind.org/

Chapter 2: Extending Daikon 8

2.8 New suppressors
As mentioned in Chapter 4 [Daikon internals], page 12, one way to make Daikon more efficient,

and to reduce clutter in the output to the user, is to reduce the number of redundant invariants of
various kinds. This section describes how to add a new suppressor relation, such that if invariant A
implies B, B is not instantiated or checked as long as A holds, saving time and space. Suppression
implications use some terminology. A suppressor (defined in the class NISuppressor) is one of a
set of invariants (NISuppression) that imply and suppress a suppressee invariant (NISuppressee).
The set of all of the suppressions that suppress a particular suppressee is stored in the class
NISuppressionSet.

Adding a new suppression is straightforward when the invariants involved do not have any state.
Define the suppressee and each of the suppressions that suppress it using the corresponding con-
structors. Add the method get_ni_suppressions to the class of the invariant being suppressed
and return the appropriate suppression set. Make sure that get_ni_suppressions always returns
the same suppression set (i.e., that storage to store the suppressions is only allocated once). Nor-
mally this is done by defining a static variable to hold the suppression sets and initializing this
variable the first time that get_ni_suppressions is called.

The following example defines suppressions for ‘x == y’ implies ‘x >= y’ and ‘x > y’ implies ‘x >=
y’.

private static NISuppressionSet suppressions = null;

public NISuppressionSet get_ni_suppressions() {
if (suppressions == null) {

NISuppressee = new NISuppressee(IntGreaterEqual);

NISuppressor v1_eq_v2 = new NISuppressor(0, 1, IntEqual.class);
NISuppressor v1_lt_v2 = new NISuppressor(0, 1, IntLessThan.class);

suppressions = new NISuppressionSet(new NISuppression[] {
new NISuppression(v1_eq_v2, suppressee),
new NISuppression(v1_lt_v2, suppressee),

});
}
return suppressions;

}

For suppressions depending on the state of a particular invariant, each Invariant has an
isObviousDynamically(VarInfo[] vis) method that is called once the state of other invariants
has already been determined. This method returns a non-null value if this invariant is implied by
a fact that can be derived from the given VarInfos.

For example, suppose division was not defined for divisors smaller than 1. The following example
defines an obvious check for ‘x <= c’ (where c < 1 is a constant) implies ‘y % x == 0’, written in the
Divides class.

public DiscardInfo isObviousDynamically(VarInfo[] vis) {
DiscardInfo di = super.isObviousDynamically(vis);
if(di != null) {

return di;
}

VarInfo var1 = vis[0];

Chapter 2: Extending Daikon 9

PptSlice1 ppt_over1 = ppt.parent.findSlice(var1);

if(ppt_over1 == null) {
return null;

}

for(Invariant inv : ppt_over1.invs) {
if(inv instanceof UpperBound) {
if(((UpperBound) inv).max() < 1) {

return new DiscardInfo(this, DiscardCode.obvious,
‘Divides is obvious when divisor less than one’);

}
}

}

return null;
}

2.9 Reading dtrace files
If you wish to write a program that manipulates a .dtrace file, you can use Daikon’s built-in

mechanisms for parsing .dtrace files. (This is easier and less error-prone than writing your own
parser.)

You will write a subclass of FileIO.Processor, then pass an instance of that class to
FileIO.read_data_trace_files. Daikon will parse each record in the trace files that you
indicate, then will pass the parsed version to methods in your processor.

For a simple example of how to use FileIO.Processor, see the file
daikon/java/daikon/tools/ReadTrace.java.

2.10 System.exit
The Daikon codebase does not call System.exit(), except in a dummy main method that catches

TerminationMessage, which is the standard way that a component of Daikon requests the JVM
to shut down.

The reason for this is that calling System.exit() is usually a bad idea. It makes the class
unusable as a subroutine, because it might kill the calling program. It can cause deadlock. And it
can leave data in an inconsistent state (for example, if the program was in the middle of writing a
file, still held non-Java locks, etc.), because the program has no good way of completing any actions
that it was in the middle of. Therefore, it is better to throw an exception and let the program
handle it appropriately. (This is true of instrumentation code as well.)

To see the stack trace for a TerminationMessage, pass --config_option daikon.Debug.show_
stack_trace=true on the command line.

Chapter 3: Debugging Daikon 10

3 Debugging Daikon

Section “Daikon debugging options” in Daikon User Manual describes several command-line
options that enable logging, which can be a useful alternative to using a debugger when debugging
Daikon. Because Daikon processes large amounts of data, using a debugger can be difficult.

This chapter describes some of the command-line options in more detail.

3.1 Track logging
Often it is desirable to print information only about one or more specific invariants. This is

distinct from general logging because it concentrates on specific invariant objects rather than a
particular class or portion of Daikon. This is referred to as Track logging because it tracks particular
values across Daikon.

The --track class|class|...<var,var,var>@ppt option to Daikon (see Section “Daikon de-
bugging options” in Daikon User Manual) enables track logging. The argument to the --track
option supplies three pieces of information:

1. The class name of the invariant (e.g., IntEqual). Multiple class arguments can be specified
separated by pipe symbols (‘|’).

2. The variables that are used in the invariant (e.g., return, size(this.s[])). The variables
are specified in angle brackets (‘<>’).

3. The program point of interest (e.g., DataStructures.StackAr.findMin()V:::ENTER). The
program point is preceded by an at sign (‘@’).

Each item is optional. For example:

IntEqual<x,y>@makeEmpty()
LessThan|GreaterThan<return,orig(y)>@EXIT99

Multiple --track switches can be specified. The class, program point, and each of the variables
must match one of the specifications in order for information concerning the invariant to be printed.

Matching is a simple substring comparison. The specified item must be a substring of the actual
item. For instance, LessThan matches both IntLessThan and FloatLessThan.

Program points and variables are specified exactly as they are seen in normal Daikon invariant
output. Specifically, Ppt.name and VarInfo.name.name() are used to generate the names for
comparisons.

Invariants are not the only classes that can be tracked. Any class name is a valid entry. Thus, for
example, to print information about derived sequence variables from sequence this.theArray[]
and scalar x at program point DisjSets.find(int):::EXIT, the tracking argument would be:

SequenceScalarSubscriptFactory<x,this.theArray[]>@DisjSets.find(int):::EXIT

There are two configuration options that can customize the output. The option
daikon.Debug.showTraceback will output a stack trace on each log statement. The option
daikon.Debug.logDetail will cause more detailed (and often voluminous) output to be printed.
For more information, see Section “Configuration options” in Daikon User Manual.

Note that all interesting information is not necessarily logged. It will often be necessary to add
new logging statements for the specific information of interest (see Section 3.1.1 [Adding track
logging], page 11). This is covered in the next section.

More detailed information can be found in the Javadoc for daikon.Debug and
daikon.inv.Invariant.

http://plse.cs.washington.edu/daikon/download/api/daikon/Debug.html
http://plse.cs.washington.edu/daikon/download/api/daikon/inv/Invariant.html

Chapter 3: Debugging Daikon 11

3.1.1 Adding track logging

When you add a new invariant, derived variable, or other component to Daikon, you should
ensure that it supports track logging in the same way that existing components do. This section
describes how to do so.

Track logging is based around the class name, program point name, and variables of interest.
Track logging methods accept these parameters and a string to be printed. Debug.java implements
the following basic log methods:

log (String)
log (Class, Ppt, String)
log (Class, Ppt, VarInfo[], String)

The first uses the cached version of the Class, Ppt, and VarInfo that was provided in the con-
structor. The second uses the specified variables and the VarInfo information from Ppt. The third
specifies each variable explicitly.

When logging is not enabled, calling the logging functions can take a significant amount of time
(because the parameters need to be evaluated and passed). To minimize this, a function logOn()
is provided to see if logging is enabled. It is recommended that code of the following form be used
for efficiency:

if (Debug.logOn()) {
Debug.log (getClass(), ppt, "Entering routine foo");

}

Track logging also can work with other loggers. Each of the logging methods has an alternative
version that also accepts a logger as the first argument. In this case, normal track logging is
performed if the class, ppt, and vars match. If they don’t match, the same information is logged
via the specified logger. For example:

if (Debug.logOn || logger.isLoggable (Level.FINE)) {
Debug.log (logger, getClass(), ppt, "Entering routine foo");

}

The above will print if either the tracking information matches or if the specified logger is enabled.

Convenience methods are available for track logging invariants. In this case the class name, ppt,
and variable information are all taken from the invariant. The available methods are:

logOn()
logDetail()
log (String)
log (Logger, String)

These correspond to the Debug methods described above. They are the recommended way to log
information concerning invariants.

Track logging also provides one additional level of detail. The function logDetail() returns
whether or not more detailed information should be printed. This should be used for informa-
tion which is not normally interesting or especially voluminous output. Often statements using
logDetail() should be commented out when not in active use.

3.1.2 Track log output

Each call to a track log method will produce output in the same basic format. Space for three
variables is always maintained for consistency:

daikon.Debug: <class>: <ppt>: <var1>: <var2>: <var3>: <msg>

If showTrackback is enabled, the ‘traceback’ will follow each line of debug output.

Chapter 4: Daikon internals 12

4 Daikon internals

This chapter describes some of the techniques used in Daikon to make it efficient in terms of time
and space needed. These techniques can be enabled or disabled at the Daikon command line, as
described in Section “Running Daikon” in Daikon User Manual.

4.1 Avoiding work for redundant invariants
Daikon reduces run time and memory by avoiding performing work for redundant invariants that

provide no useful information to the user. There are three basic types of optimization that can be
performed for uninteresting invariants: non-instantiation, suppression, and non-printing.

Non-instantiation prevents the creation of an invariant because the invariant’s truth value is
statically obvious (from the semantics of the programming language), no matter what values may
be seen at run time. Two examples are ‘A[i] is an element of A[]’ and ‘size(A[]) >= 0’. Non-
instantiation is implemented by the by the isObviousStatically method. With the equality sets
optimization (see Section 4.3 [Equality optimization], page 13), non-instantiation can only happen
if all equality permutations are statically obvious. Note that isObviousStatically should be used
only for invariants that are known to be true. Other code presumes that any statically obvious
invariants are true and can be safely presumed when determining if other invariants are redundant.

An invariant can be suppressed if it is logically implied by some set of other invariants (referred to
as suppressors). A suppressed invariant is not instantiated or checked as long as its suppressors hold.
For example ‘x > y’ implies ‘x >= y’. Suppression has some limitations. It cannot use as suppressors
or suppress sample dependent invariants (invariants that adapt themselves to the samples they
see and whose equation thus involves a constant such as ‘x > 42’). Suppression also cannot use
relationships between variables. For example, it cannot suppress ‘x[i] = y[j]’ by ‘(x[] = y[]) ^
(i = j)’. Suppressor invariants can only use variables that are also in the invariant that is being
suppressed. In this example, only invariants using the variables ‘x[i]’ and ‘y[i]’ can be used as a
suppressors. See Section 2.8 [New suppressors], page 8 for more information.

Non-printing is a post-pass that throws out any invariants that are implied by other true in-
variants. It is similar to suppression, but has none of the limitations of suppression. But since
it is only run as a post pass, it cannot optimize run time and memory use as suppression can.
Non-printing should be used only in cases where suppression cannot. Non-printing is imple-
mented by ObviousFilter, which calls the isObviousDynamically method on invariants. The
isObviousStatically method is also used by the non-printing checks; it can be called at the end
without reference to equality sets.

More detail can be found in the paper “Efficient incremental algorithms for dynamic detection
of likely invariants” by Jeff H. Perkins and Michael D. Ernst, published in Foundations of Software
Engineering in 2004; the paper is available from http://plse.cs.washington.edu/daikon/pubs/
invariants-incremental-fse2004-abstract.html.

4.2 Dataflow hierarchy
The dataflow hierarchy expresses relationships between variables at different program points. It

is used to save time and space during invariant generation and to prevent invariants from being
printed multiple times.

Suppose there are two program points X and its parent Y. Then every sample seen at X is also
seen at Y, and every invariant that is true at Y is also true at X.

Variable z in program point X is related to variable z’ in another program point Y by a flow
relation if every sample seen of z at X is also seen of z’ at Y. Y is called a parent program point
of X.

http://plse.cs.washington.edu/daikon/pubs/invariants-incremental-fse2004-abstract.html
http://plse.cs.washington.edu/daikon/pubs/invariants-incremental-fse2004-abstract.html

Chapter 4: Daikon internals 13

For example, all the field variables in the :::ENTER program point of a method in class C relate
to the field variables in the :::CLASS program point of C. This is because the state of C, when in
context at the entry :::ENTER program point, is also in context at the :::CLASS program point.
Any invariant that holds true on a parent program point must hold on the child program point.
Daikon saves time and space by only computing invariants at the highest parent at which they
apply.

Section A.3.2 [Program point declarations], page 33 describe how program points are declared
in a Daikon input file. Here we will describe how the parent records are typically used to connect
program points into a dataflow hierarchy.

Daikon uses three primary relationship types (PARENT, ENTER-EXIT and EXIT-EXITNN) to connect
the program points into an acyclic dataflow hierarchy.

• A program point that represents the ENTRY or EXIT of a static method will have a parent
record that points to the CLASS program point for the containing class.

• A program point that represents the ENTRY or EXIT of a non-static (instance) method will have
a parent record that points to the OBJECT program point for the containing object.

• An ENTER-EXIT edge connects each method’s ENTER program point with its corresponding
EXCEPTION and EXIT program points.

• An EXIT-EXITNN edge connects each method’s EXIT program point with each of its correspond-
ing EXIT<id> program points.

A program point that represents a CLASS will usually not have a parent record.

• A program point that represents a OBJECT will have a parent record that points to the CLASS
program point for the object if the object has static data members.

When using Daikon, the relations used to describe the dataflow hierarchy may result in some true
invariants that are not reported at some program points. However, the invariant will be present in
some parent program point. The dataflow hierarchy is used by default, but can be disabled by the
--nohierarchy flag. When dataflow is enabled, the only samples that are examined by Daikon
are the :::EXIT program points (plus ‘orig’ variables) since these contain a complete view of the
data, from which invariants at all other locations can be inferred. For example, Daikon does not
need to examine data at :::ENTER or :::OBJECT program points which are parents of :::EXIT in
the dataflow hierarchy.

4.3 Equality optimization
When N variables are equal within a program point there will be N(N-1)/2 pairwise invariants

to represent the equality within the equal variables, and N copies of every other invariant. For
example, if a, b, and c are equal, then ‘a == b’, ‘a == c’, ‘b == c’ will be reported as pairwise
invariants, and ‘odd(a)’, ‘odd(b)’ and ‘odd(c)’ will be reported. If the variables will always be
equal, then reporting N times the invariants is wasteful. Daikon thus treats equality specially.

Each group of variables that are equal from the start of inferencing are placed in equality sets. An
equality set can hold an arbitrary number of variables, and replaces the O(N^2) pairwise equality
invariants. Every equality set has a leader or canonical representation by a variable in the set.
Non-equality invariants are only instantiated and checked on the leader. When printing invariants,
Daikon reports only invariants on the leader. The user can easily determine that ‘odd(a)’ and
‘a == b’ imply ‘odd(b)’. Equality optimization can be turned off at the command line with the
--noequality flag.

Chapter 5: Testing 14

5 Testing

Daikon has two sets of tests: unit tests (see Section 5.1 [Unit testing], page 14) and regression
tests (see Section 5.2 [Regression tests], page 17). If there are any differences between the expected
results and the ones you get, don’t check in your changes until you understand which is the desired
behavior and possibly update the goals.

The Daikon distribution contains unit tests, but not regression tests (which would make the
distribution much larger). The regression tests appear in Daikon’s version control repository (see
Section 2.2 [Source code (version control repository)], page 2), within the tests subdirectory.

5.1 Unit testing
The unit tests are found in daikon/java/daikon/test/; they use the ‘JUnit’ unit testing frame-

work. They take a few seconds to run. They are automatically run each time you compile Daikon
(by running make in $DAIKONDIR/java or any of its subdirectories). You can also run them ex-
plicitly via make unit. When you write new code or modify old code, please try to add unit
tests.

5.1.1 Invariant format testing

This tests the formatting of invariants with specified input. The tests are configured in the file
InvariantFormatTest.commands under daikon/test/. The InvariantFormatTest.commands file
must be in the classpath when this tester is run.

The file is formatted as follows:

<fully qualified class name> [<instantiate args>]
<type string>
<goal string>+ <- 1 or more goal strings
<sample>* <- 0 or more samples

The file format should be the same regardless of blank or commented lines except in the samples
area. No blank lines or comments should appear after the goal string before the first sample or
between parts of samples (these lines are used to determine where sample lists end). This will be
remedied in a future version of the tester.

Instantiate args
These are optional additional arguments to the static instantiate method of the class.
Each argument consists of the type (boolean or int) followed by the value. For example:

boolean true
int 37 boolean false

Type string:
A type string must consist of one or more of the following literals: ‘int’, ‘double’,
‘string’, ‘int_array’, ‘double_array’, or ‘string_array’, separated by spaces. This
string represents the types that an invariant is supposed to compare For instance,
a binary integer comparison would have type string ‘int int’. A pairwise sequence
comparison would have type string ‘int_array int_array’.

Goal string:
The goal string must start with the prefix ‘Goal ’, and then continue with ‘(<format
type>): ’, where format type is the format in which the invariant will print. After
this the representation of the invariant must occur. It must represent the invariant
result exactly as printed, even white space is significant (as proper formatting should
be correct down to the whitespace). The first variable (the one corresponding to the

Chapter 5: Testing 15

first type in the type string) corresponds with ‘a’, the second with ‘b’ and so on. Format
the type string accordingly. (In samples, the value of ‘a’ is read first, possibly followed
by ‘b’, and then possibly ‘c’, depending on the arity of the invariant.)

Example:
Type string, Goals
| |
\|/ |
int \|/
Goal (daikon): a >= -6
Goal (java): a >= -6
Goal (esc): a >= -6
Goal (ioa): a >= -6
Goal (jml): a >= -6
Goal (simplify): (>= |a| -6)

Note that the spacing on the goal lines is exact, that is, no extra spaces are allowed
and no spaces are allowed to be missing. So the exact format is again:

Goal<1 space>(<format name>):<1 space><goal text>

Samples: Values formatted according to the type string, one value per line Make sure that the
samples provided are actually instances of that particular invariant (That is, if the
desired invariant is ‘a < b’, then the first number of each sample better be less than
the second)

Arrays and strings must be formatted according to the Daikon .dtrace file convention
(for a full description, see Appendix A [File formats], page 31). This states that arrays
must be surrounded in brackets (start with ‘[’, end with ‘]’), and entries must be
separated by a space. Strings must be enclosed in quotes (‘"’). Quotes within a string
can be represented by the sequence ‘\"’.

For example:

[1 2 3 4 5] - an array with the elements 1, 2, 3, 4, 5
"aString" - a string
"a string" - also legal as a string
"\"" - the string with the value "
["a" "b" "c"] - an array of strings

int int <- type string
Goal: a < b <- goal string, no comment/blank lines after this
1 <- or before this
2
2 <-|__ Pair of values (a = 2 , b = 3)
3 <-|

Other examples are in the existing test file (InvariantFormatTest.commands).

The output of a test run can be converted into goals by using the --generate_goals switch to
the tester as follows:

java daikon.test.InvariantFormatTester --generate_goals

Note that this test is included in the set of tests performed by the master tester, and so it is not
necessary to separately run this test except to generate goal files.

Furthermore, this framework cannot parse complex types from files unless they contain a public
Object valueOf(String s) function. Otherwise the program has no was of knowing how to create
such an object from a string. All primitives and the String type are already recognized.

Chapter 5: Testing 16

5.1.2 Sample Testing

Sample testing tests various components of Daikon as samples are being processed. A file (nor-
mally daikon/test/SampleTester.commands) specifies a .decls file to use, the samples for each
‘ppt/var’, and assertions about Daikon’s state (such as whether or not a particular invariant exists).

Each line of the file specifies exactly one command. Blank lines and leading blanks are ignored.
Comments begin with the number sign (‘#’) and extend to the end of the line. The type of command
is specified as the first token on the line followed by a colon. The supported commands are:

[SampleTester Command]decl: decl-file
This command specifies the declaration file to use. This is a normal .decls file that should
follow the format defined in the user manual.

[SampleTester Command]ppt: ppt
This command specifies the program point that will be used with following vars, data, and
assert commands. The program point should be specified exactly as it appears in the .decls
file.

[SampleTester Command]vars: var1 var2...
Specifies the variables that will be used on following data lines. Each variable must match
exactly a variable in the ppt. Other variables will be treated as missing.

[SampleTester Command]data: val1 val2...
Specifies the values for each of the previously specified variables. The values must match the
type of the variables. A single dash (-) indicates that a variable is missing.

[SampleTester Command]assert: assertion
Specifies an assertion that should be true at this point (see Section 5.1.2.1 [Assertions],
page 16). The negation of an assertion can be specified by adding an exclamation point
before the assertion (for example: !inv("x > y", x, y)).

5.1.2.1 Assertions

Assertions are formatted like function calls: <name>(arg1, arg2, ...). The valid assertions for
the assert: command are:

[Assertion]inv format var1 ...
The inv assertion asserts that the specified invariant exists in the current ppt. The format
argument is the result of calling format() on the invariant. This is how the invariant is
recognized. The remaining arguments are the variables that make up the invariants slice.
These must match exactly variables in the ppt. The inv assertion returns true if and only if
the slice exists and an invariant is found within that slice that matches format.

Optionally, format can be replaced by the fully qualified class name of the invariant. In this
case, it is only necessary for the class to match.

More assertions can easily be added to SampleTester.java as required.

5.1.2.2 Example file

The following is an simple example of sample testing.

decl: daikon/test/SampleTesters.decls

ppt: foo.f():::EXIT35
vars: x y z

Chapter 5: Testing 17

data: 1 1 0
data: 2 1 0
assert: inv("x >= y", x, y)
assert: inv(daikon.inv.binary.twoScalar.IntGreaterEqual,x,y)
assert: !inv("x <= y", x, y)

5.2 Regression tests
The regression tests run Daikon on many different inputs and compare Daikon’s output to ex-

pected output. They take about an hour to run.

The regression tests appear in the $DAIKONDIR/tests/ directory. Type make in that directory to
see a list of Makefile targets. The most common target is make diffs; if any output file has non-zero
size, the tests fail. You do not generally need to do make clean, which forces re-instrumentation
(a possibly slow process) the next time you run the tests.

As when you install or compile Daikon, when you run the tests environment variable DAIKONDIR
should be set.

You should generally run the regression tests before checking it a change (especially any non-
trivial change). If any of the regression test diffs has a non-zero size, then your edits have changed
Daikon’s output and you should not check in without carefully determining that the changes are
intentional and desirable (in which case you should update the goal output files, so that the diffs
are again zero).

There are several subdirectories under $DAIKONDIR/tests/, testing different components of the
Daikon distribution (such as Kvasir, see Section “Kvasir” in Daikon User Manual). Tests of the
invariant detection engine itself appear in $DAIKONDIR/tests/daikon-tests/.

Each Makefile under $DAIKONDIR/tests includes $DAIKONDIR/tests/Makefile.common, which
contains the logic for all of the tests. Makefile.common is somewhat complicated, if only because
it controls so many types of tests.

5.2.1 Kvasir regression tests

The Kvasir (Daikon C front-end) tests appear in the $DAIKONDIR/tests/kvasir-tests direc-
tory. These tests run Daikon to ensure that the Kvasir output is valid Daikon input. To run them,
go to $DAIKONDIR/tests/kvasir-tests or of its sub-directories and run make summary-w-daikon.
If any tests return ‘FAILED’, then you should look at the appropriate .diff file. If you feel that
the failure was actually a result of your Daikon changes and should be in fact correct output, then
run make update-inv-goals to update the Daikon invs.goal file.

5.2.2 Adding regression tests

Most Daikon regression tests are in subdirectories of $DAIKONDIR/tests/daikon-tests/. (There
is also a $DAIKONDIR/tests/chicory-tests/ directory, but it is usually better to put tests in
$DAIKONDIR/tests/daikon-tests/, even if they are exercising Chicory-specific behavior.)

To create a new test, perform the following steps.

1. Create a new subdirectory of $DAIKONDIR/tests/daikon-tests/.

2. Put the source files for the test under $DAIKONDIR/tests/sources/, not in the test directory
itself. Your test may be able to re-use existing Java source code that appears in that directory.

3. It is expedient to copy a Makefile from another subdirectory, such as $DAIKONDIR/tests/
daikon-tests/StackAr/, then modify it.

The Makefile must contain at least the following entries.

Chapter 5: Testing 18

‘MAIN_CLASS’
Dot separated fully qualified name of the class that contains the main entry point
for the test. For example,

MAIN_CLASS := DataStructures.StackArTester.

‘include ../../Makefile.common’
This includes the common portion of the test Makefiles that does most of the work.
See it for more information on the details of regression testing.

‘instrument-files-revise:’
A target that writes the list of files to instrument. For example,

instrument-files-revise:
echo "DataStructures/StackAr.java" >| ${INST_LIST_FILE}

If you run make (without a target), you will see a description of all of the Makefile’s function-
ality. Most of that is inherited from $DAIKONDIR/tests/Makefile.common.

4. The .goal files are the expected results of running Daikon and its associated tools.

For example, the StackAr directory contains the following .goal files, among others:

Makefile
Stackar.spinfo-static.goal
StackAr.txt-daikon.goal
StackAr.txt-esc.goal
StackAr.txt-jml.goal
StackAr.txt-merge-esc.goal
StackAr.txt-merge-jml.goal

If you omit some .goal files, then the related tests will not be run. (If you can’t figure out
how to ensure the tests are not run, it may be easier to just add the additional .goal files.)

You can start out with the .goal files empty. Execute make diffs, to produce output; the
tests will fail because the output is not identical to the empty .goal files. When the test
output is satisfactory, execute make update-goals to copy the actual results to the .goal
files. Then, commit the goal files, Makefile, and source files to the repository.

5. Make the new test be run by adding to the appropriate list (usually ‘everything’ or ‘quick’)
in $DAIKONDIR/tests/daikon-tests/Makefile.

For more information, see the comments in file $DAIKONDIR/tests/Makefile.common.

Chapter 6: Editing Daikon source code 19

6 Editing Daikon source code

The Daikon source code follows the Google Java Style and also Michael Ernst’s coding conven-
tions.

6.1 Eclipse setup

6.1.1 Start up Eclipse

Just run the command eclipse at the command shell.

There is one big catch: take note of where you launch Eclipse and always launch Eclipse from
the same location. For example, you might want to alias run-eclipse with cd $HOME; eclipse.
For convenience, this is already done for you if you source the daikon-dev.bashrc startup script.
There are ways around the launch location inconvenience, such as the -data switch, but the alias
trick should be the simplest and least confusing workaround.

It is strongly recommended that you make the following customizations to Eclipse:
Window >> Preferences >> Workbench >> Refresh Workspace on Startup

Window >> Preferences >> Java >> Compiler >> Problems >> Unused imports >> Ignore

Window >> Preferences >> Java >> Compiler >> Style >> Non-static access >> >> Ignore

6.1.2 Work on existing coding projects

6.1.2.1 Import an existing project

Second, import Daikon into Eclipse. To import: start Eclipse, then choose menu item
‘File->Import->ExistingProjectIntoWorkspace’, then enter (the full name of) directory
$DAIKONDIR/java for Project Contents.

Those two steps are all there is to it!

(This simple procedure works because there are already .project and .classpath files in
$DAIKONDIR/java. To import a project that doesn’t have these files, you would need to create
them (for instance, copy them from Daikon’s), or else follow a different procedure to work on your
project in Eclipse.)

6.1.2.2 Importing a different existing project

Before working on code in Eclipse, you must import the code into the Eclipse workspace. You
also need to set up various compilation settings and specify jars and classes that should be in the
compilation classpath. (By default, Eclipse does not use your CLASSPATH environment variable.)

1. Change to the Java perspective by selecting "Java Perspective" in the perspective menu on
the far-left tool panel. You should see some of the windows move around to a structure similar
to the screenshot below.

2. Select the menu item File->New->Project

3. On the popup window, select Java Project and click Next

4. Call the project ‘Daikon’ or some other appropriate name and click Next.

5. On the next window, create a new folder in the project called src, and answer Yes to the next
dialog box asking you to confirm a change in the build directory. Select ‘Ok’ and you should
see the new Project as a small folder icon in the package explorer.

6. Select the menu item File->Import

7. On the next popup window, select ‘File System’ and click Next. Browse to the folder contain-
ing your source code. Using the standard ‘PAG’ setup, the folder should be $DAIKONDIR/java.

https://google.github.io/styleguide/javaguide.html
http://homes.cs.washington.edu/~mernst/advice/coding-style.html
http://homes.cs.washington.edu/~mernst/advice/coding-style.html

Chapter 6: Editing Daikon source code 20

The import destination should be Daikon/src. Check the boxes for including Daikon, ‘jtb’,
and plume.

8. Finally, add the required jars for Daikon by right-clicking on the project and selecting the
Properties menu. Select "Java Build Path", then "Libraries", then "Add External Jars" and
add tools.jar and all .jar files in daikon/java/lib/.

Note that if you follow these directions, then the compiled classes do not appear in the directory
from which you imported in the previous step. Instead, the compiled classes appear in the Eclipse
workspace directory. If you followed the setup instructions above, then the compiled code will be
in "$HOME/.eclipse/Daikon/bin", which you should add to your classpath in order to use the
updates you make from Eclipse.

6.1.3 Interaction with external tools

Eclipse compiles your project whenever you save. However, it parses frequently during editing
and issues most or all of the errors and warnings that the compiler would have. In order to clear a
warning/error (in the Task List), you must save the file, however.

If you change files outside Eclipse, you should refresh Eclipse, via right-clicking on the project
or via menu item File >> Refresh.

6.1.4 Using the Eclipse debugger

To begin debugging, you can click on the bug icon in the toolbar or select Run->Debug from the
menu. You will see the same window as if you selected Run->Run, but when the Java application
launches, Eclipse will switch to the Debugging Perspective, which reveals many windows such as
the stack trace window, the variable values window, and the step control panel.

Debugging features (window locations given for default setup):

• Breakpoints: You can add breakpoints during editing by double-clicking on the left margin
area of the source code. When debugging, the program halts when it reaches a breakpoint.

• Stack Trace: Once the program halts at a breakpoint, the window in the upper-left corner
window show the stack trace.

• Step Controls: Once the program halts at a breakpoint, the panels just below the stack trace
allow you to step through the code one line at a time (step over), resume execution as normal
(resume), step down into a method call (step into), or execute until leaving the current method
(Step return).

• Variables: On the top right window, there is a tab pane that displays the values of objects
and fields during a breakpoint halt. You can also type in any legal Java expression that could
appear at the breakpoint, and the window will display the value of the expression (don’t forget
to put a semi-colon at the end of your expression!).

6.1.5 Using Git with Eclipse

This section has yet to be written, although you can just do all the editing, compiling, and
running from the Eclipse IDE while doing version control commands from the shell or whatever
current system you use.

6.2 Editing daikon.texinfo
The Daikon manual appears in doc/daikon.texinfo. The manual is written using the Texinfo

formatting system, which makes it easy to produce HTML, info, or printed (PDF) output.

You can edit the manual using an ordinary text editor. Emacs has a useful Texinfo mode. You
can mimic the formatting commands that already appear in the manual, but it’s also a good idea
to read the Texinfo documentation.

http://www.gnu.org/software/texinfo/

Chapter 6: Editing Daikon source code 21

If you wish to create a new section of the manual, insert two lines like the following:

@node @Short title
@chapter @Long title

where you select the short and the long titles (which may be the same), and you may replace
@chapter by @section, @subsection, or @subsubsection.

Follow the Texinfo conventions for marking up text. In particular:

• Don’t use regular double quotes (") in running text. Instead, use two single back quotes and
two regular quotes, “like this”. Emacs will do this substitution for you if you are using its
Texinfo mode.

• Often, some other kind of markup is better than quotes:

• @code is for names of classes, functions, variables, keywords, and other fragments of source
code.

• @var is for meta-syntactic variables, not for referring to variables that appear literally in
the source code.

• @file is for the names of files.

• @option is for command-line options.

• @samp is for sample input or output. (Alternatively, you can use @example to set off longer
input/output strings.)

• @command is for command lines.

• Examples shouldn’t include extra spaces on the left for indentation since Texinfo already adds
some indentation. Remember that in code examples you need to replace all curly braces with
{ and } to quote them for Texinfo.

• Don’t mix @example and @smallexample in the same section since it looks funny to have
examples in two different sized fonts. If your example is too wide to fit on the page with
@example, it’s better to insert some line breaks to make it more readable than to shrink the
font.

Once you have edited the manual, run make twice (yes, you must run it twice) in order to generate
formatted versions of the manual (daikon.{html,pdf}).

Chapter 7: Making a distribution (making a release) 22

7 Making a distribution (making a release)

This section provides the instructions for publishing a Daikon distribution, or making a release.
If you only want to create the daikon.tar or daikon.tar.gz file in your own directory, then simply
run make daikon.tar or make daikon.tar.gz.

Official releases have even version numbers (e.g., 4.6.4) and intermediate work has odd version
numbers (e.g., 4.7.3). This means as you prepare for a release the current version number is probably
odd. It will be updated as one of the steps in the release process. After making the distribution, one
of the final steps is to increment the version number again to prepare for subsequent development.
This system has the useful side effect of allowing the build and test process to be repeated to
fix a problem without having to worry about updating or resetting the version number. Another
advantage is to reinforce, to people who are working from the version control repository, that they
are not using the released version, because the version numbers differ.

The Daikon distribution site is located at http://plse.cs.washington.edu/daikon/ and is
served from the UW CSE file system at /cse/web/research/plse/daikon. In order to be able to
write to the distribution site, your CSE user id must be a member of the ‘plse_www’ Unix group.

For each of the major steps below, an approximate elapsed time is listed. These timings are up
to date as of December 2015. They were measured on a quad x86-64 based machine at 3.4GHz
with 16GB of memory (buffalo.cs.washington.edu). Barring any difficulties, the entire process will
take at least two hours — but could be much more depending on the number of different platforms
on which you test the release.

Each of the steps below assumes that you are using the Bash shell.

7.1 Directory layout requirements
• Environment variable DAIKONDIR must be set to a clone of https://github.com/codespecs/

daikon.

• A clone of https://github.com/codespecs/fjalar must be a sibling of $DAIKONDIR.

• Environment variable JAVA_HOME must be set to the appropriate JDK installation. For now,
this should be a current version of JDK 8. If the default JDK on your system is not JDK 8,
you will also need to add $JAVA_HOME/bin to your PATH. See the example in the next section.

• Optionally, set environment variable BIBDIR to a clone of https://github.com/mernst/
plume-bib.

7.2 Distribution setup instructions

Get a fresh copy of your Bash shell (e.g., log out and log back in), then run the following bash
commands. Note that your system may no longer have JDK 8 installed at /usr/lib/jvm-1.8.0.
If you do not have a local copy, one can be found at /homes/gws/markro/jdk1.8.0_351. In any
case, adjust environment variables below as necessary.

export DAIKONDIR=$inv/daikon
export JAVA_HOME=/usr/lib/jvm/java-1.8.0
export PATH=$JAVA_HOME/bin:$PATH
unset CHECKERFRAMEWORK

7.3 Getting the latest version of dependencies
Update the Daikon source files to their most recent version.

http://plse.cs.washington.edu/daikon/
https://github.com/codespecs/daikon
https://github.com/codespecs/daikon
https://github.com/codespecs/fjalar
https://github.com/mernst/plume-bib
https://github.com/mernst/plume-bib

Chapter 7: Making a distribution (making a release) 23

set -o pipefail

(cd $DAIKONDIR && git pull && git log --branches --not --remotes && git status)

(cd $DAIKONDIR/../fjalar && git pull && git log --branches --not --remotes && git status)

Each of the two commands should print exactly these lines:

Already up-to-date.
On branch master
Your branch is up-to-date with ’origin/master’.

nothing to commit, working directory clean

[Time: moments]

The Fjalar tool set (primarily, Kvasir) is built upon, or uses pieces from, two open source projects.
The home page for the Valgrind instrumentation framework is https://valgrind.org. The home
page for the GNU Binutils (a collection of binary tools, of which Kvasir uses only readelf) is http://
www.gnu.org/software/binutils/.

File $DAIKONDIR/fjalar/valgrind/REVISION indicates the version of these tools that Kvasir
uses. You can determine whether a newer version of these tools is available by comparing the
REVISION file to https://valgrind.org/downloads/current.html and http://ftp.gnu.org/
gnu/binutils/?C=M;O=D. If so, you should update the Fjalar source tree as soon as practical. For
details, see the separate document “Merging newer versions of Valgrind into Fjalar”, which appears
in the fjalar repository.

7.4 The day before the release
Do these steps the day before the release, so that tests have time to complete overnight.

• Edit the doc/CHANGELOG.md file to indicate what has changed in this version. A good way to
determine what has changed is to diff the Texinfo source files in the doc/ directory against the
previous versions:

cd $DAIKONDIR/doc

diff -b -u -s --from-file /cse/web/research/plse/daikon/download/doc *.texinfo

Another good source of information are the repository logs since the last release:

cd $DAIKONDIR

DAIKONVERSION=`wget -q http://plse.cs.washington.edu/daikon/download/doc/VERSION \

-O - | xargs echo -n`

git log v$DAIKONVERSION..HEAD

In addition, you should run the same command in your Fjalar clone:

cd $DAIKONDIR/fjalar

DAIKONVERSION=`wget -q http://plse.cs.washington.edu/daikon/download/doc/VERSION \

-O - | xargs echo -n`

git log v$DAIKONVERSION..HEAD

When you have competed your updates, commit and push the changes.

[Time: a few minutes]

• Check the release documents for spelling errors.

cd $DAIKONDIR/doc
make spell-check

Any words that may be spelled incorrectly are output to standard out.

• If the word is misspelled, correct it in the source (.texinfo) file.

• If the word is spelled correctly and is a normal English word, add it to daikon.dict,
keeping the list in alphabetical order.

https://valgrind.org
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
https://raw.githubusercontent.com/codespecs/fjalar/master/valgrind/REVISION
https://valgrind.org/downloads/current.html
http://ftp.gnu.org/gnu/binutils/?C=M;O=D
http://ftp.gnu.org/gnu/binutils/?C=M;O=D
https://github.com/codespecs/fjalar/blob/master/doc/valgrind-merge.texinfo

Chapter 7: Making a distribution (making a release) 24

• If the word is spelled correctly and is a proper name, such as a person’s or company’s
name, then either add it to daikon.dict or write @nospellcheck around it.

• If the word is technical information, such as part of a computer command or filename, then
mark it with a Texinfo command; see “Chapter 9: Marking Text, Words and Phrases” of
the GNU Texinfo Manual (PDF, HTML).

[Time: moments]

• Update dependencies in daikon/java/lib/. For details, see daikon/java/lib/README.

TODO: it would be good to build the staging release the day before, too, so that links can be fixed
the day before the release or at least very early in the process.

7.5 Steps for making the distribution

1. Verify that Daikon passes its tests.

All of the jobs at https://dev.azure.com/mernstdaikon/daikon/_build should pass (they
should be green). Here is a list of them:

https://dev.azure.com/mernstdaikon/daikon/_build/latest?definitionId=1&branchName=master

https://dev.azure.com/mernstdaikon/daikon/_build/latest?definitionId=2&branchName=master

If any of the jobs is not passing, then correct the problem and wait for the jobs to complete and
pass. The delay to wait for this to happen is a reason that you should avoid making changes
to Daikon on the release day. Instead, you should make changes the day before to permit the
continuous integration jobs to run overnight.

2. Do a very clean rebuild of everything.

cd $DAIKONDIR && make very-clean clean-kvasir && make rebuild-everything

[Time: 20 min]

3. Once you have successfully reached this point, you are ready to make a release candidate and
begin testing it. The following command will verify that doc/CHANGELOG.md is up-to-date and
then list any uncommitted files.

make check-repo

The result of the command above should be:

On branch master
Your branch is up-to-date with ’origin/master’.
nothing to commit (use -u to show untracked files)

If the command output lists any files, they need to be committed to the repository and pushed
now. In that case, you will need to return to step 1 and wait for the CI jobs to complete.

[Time: moments]

4. Set the version number to an even number. You may:

• Manually edit file $DAIKONDIR/doc/VERSION, or

• If the revision number just needs to be incremented by 1 (to go from odd to even) you
may use:

make update-dist-version-file

Note that if a new feature has been added, or if some change has made the current version
incompatible from the previous release (such as a change in the dtrace file format or revised
names for tool options), then you should manually edit the VERSION file to increment the
minor version number and reset the revision number to zero.

http://www.gnu.org/software/texinfo/manual/texinfo/texinfo.pdf
https://www.gnu.org/software/texinfo/manual/texinfo/texinfo.html#Marking-Text
https://dev.azure.com/mernstdaikon/daikon/_build
https://dev.azure.com/mernstdaikon/daikon/_build/latest?definitionId=1&branchName=master
https://dev.azure.com/mernstdaikon/daikon/_build/latest?definitionId=2&branchName=master

Chapter 7: Making a distribution (making a release) 25

Optionally, override the distribution date (default: today) by redefining the environment vari-
able TODAY:

export TODAY=’November 1, 2013’

Now, update the appropriate files with the date and version number of the release and commit
these changes back to the repository:

make update-run-google-java-format && make update-and-commit-version

[Time: moments]

5. It is important to build the release candidate from a clean enlistment. (TODO: In the future,
perhaps do all release-related work on a branch. Otherwise, use of the below commands requires
committing changes to master, and there might be many commits if there is trouble with the
release.) This is to ensure we are testing only the files intended for release and that those files
are the same as a user would receive with a clone of the repository. This needs to be done in
a separate, new Bash command shell. The following commands get a fresh clone of Daikon,
set some environment variables and then build everything to be distributed and copy it to the
temporary staging area (http://plse.cs.washington.edu/staging-daikon/).

First, start a separate, new Bash command shell. Don’t kill your old one.

rm -rf /tmp/$USER/stage-daikon
mkdir -p /tmp/$USER/stage-daikon
cd /tmp/$USER/stage-daikon
git clone --filter=blob:none https://github.com/codespecs/daikon
cd daikon
export DAIKONDIR=`pwd`
export JAVA_HOME=/usr/lib/jvm/java-1.8.0
export PATH=$JAVA_HOME/bin:$PATH
unset CHECKERFRAMEWORK
make compile && make staging

The final output of this command will be a list of files that were added/removed since the
last release. If any of these differences is unexpected, then investigate. If any corrections are
required, do so back in the main repository, commit the changes, and then repeat this step.

[Time: 23 min]

6. Next, check the staging website to see if it has any broken document links.

make check-for-broken-doc-links

Review checklink.log and make corrections as appropriate.

Sometimes a website forbids robots, or artificially slows them. This can lead to link-checking
failures. After you manually check a URL for correctness, you can add it to https://github.
com/plume-lib/html-tools/blob/master/html-valid-urls so that no warning is issued in
the future.

In some cases a "403 Forbidden" error is transient, due to the website being down. You can
check such links by hand.

If the URL is correct but cannot be checked (for example, because the website prohibits spiders
or because the URL redirects to another URL but you prefer to keep the first URL in your
document), then you may need to add lines to an appropriate part of file checklink-args.txt
in https://github.com/plume-lib/checklink.

In most cases (and for most 404 errors), you should fix the document with the incorrect link.
Here is a workflow that may be used to deal with broken links:

• Use the ‘Wayback Machine’, http://archive.org/web/, and enter the URL.

https://github.com/plume-lib/html-tools/blob/master/html-valid-urls
https://github.com/plume-lib/html-tools/blob/master/html-valid-urls
https://github.com/plume-lib/checklink
http://archive.org/web/

Chapter 7: Making a distribution (making a release) 26

• You will get a timeline. Select a year and day, then you have to click on the time of day,
and then you get a version of the page at that time.

• Copy the URL from the address bar of your browser.

• If the web search is not successful, email the maintainer of the old content.

Note that you must fix problems in the original repository, not in the drop directories. This
means:

• Switch back to your original Bash shell.

• Correct the file. (Most likely located beneath either $DAIKONDIR/doc or $BIBDIR (~/bib/
if $BIBDIR is not set).)

• Commit the changes.

• Repeat the previous step to rebuild the release candidate.

• Repeat this step to verify your corrections.

If checklink.log contains an error message of the form:

List of broken links and other issues:

http://plse.cs.washington.edu/daikon/download/doc/developer/Requirements-for-compiling-Kvasir.html

Line: 185

Code: 200 OK

To do: Some of the links to this resource point to broken URI fragments

(such as index.html#fragment).

The following fragments need to be fixed:

Requirements-for-compiling-Kvasir Line: 185

This is probably caused by the way makeinfo deals with chapter splits via indirect references
through stub files. Two suppress-fragment entries in checklink-args.txt in https://
github.com/plume-lib/checklink are required. For the example above, these would be:

--suppress-fragment http://plse.cs.washington.edu/daikon/download/doc/developer/\

Requirements-for-compiling-Kvasir.html#Requirements-for-compiling-Kvasir

--suppress-fragment http://plse.cs.washington.edu/staging-daikon/download/doc/developer/\

Requirements-for-compiling-Kvasir.html#Requirements-for-compiling-Kvasir

but on two long lines without any \ line continuation characters.

[Time: 8 min]

7. Test the staged distribution on a 64-bit Rocky Linux machine. Since the machine you are
using to build the release is probably such a machine, you may simply run the command
below. Success is indicated by invariant output being written to the screen.

make test-staged-dist

[Time: 5 min]

8. Test the distribution on Ubuntu and Mac OS machines.

To use Azure Pipelines, navigate to https: / /dev .azure .com /mernstdaikon /daikon /
_build?definitionId=3&_a=summary and click “Run pipeline” then “Run”.

If there is a problem, fix it and start over.

[Time: 15 min, or longer if the CI service is busy running other jobs for the codespecs organi-
zation.]

9. Once you have successfully reached this point, you have a valid release candidate and are
ready to make the actual release. Caution: If somewhere above you made a change to correct
a problem you should have restarted the release process.

At this point we are done building and testing the release candidate and you should exit the
Bash command shell created in step 5 and return to your original Bash shell.

https://github.com/plume-lib/checklink
https://github.com/plume-lib/checklink
https://dev.azure.com/mernstdaikon/daikon/_build?definitionId=3&_a=summary
https://dev.azure.com/mernstdaikon/daikon/_build?definitionId=3&_a=summary

Chapter 7: Making a distribution (making a release) 27

10. Update the website by deleting the current release and then making the staged version the
(new) current release.

cd $DAIKONDIR
make staging-to-www

[Time: 1 min]

11. Add a version label to the repository:

cd $DAIKONDIR
DAIKONVERSION=`cat $DAIKONDIR/doc/VERSION | xargs echo -n`
git tag -a v$DAIKONVERSION -m $DAIKONVERSION
git push --tags
cd fjalar
git tag -a v$DAIKONVERSION -m $DAIKONVERSION
git push --tags

[Time: moments]

12. At this point the distribution has been completed. Bump the version number to an odd value
for continuing development.

cd $DAIKONDIR
export -n TODAY
make update-dist-version-file
make update-doc-dist-date-and-version

[Time: moments]

13. Verify these changes by doing product builds (no need to clean first) and running a short
verification test.

cd $DAIKONDIR
make rebuild-everything quick-test

Success is indicated by invariant output being written to the screen.

[Time: 5 min]

14. Commit changes back to the repository:

cd $DAIKONDIR
git commit -a -m "Bump version number for ongoing development."
git push
cd fjalar
git commit -a -m "Bump version number for ongoing development."
git push

[Time: moments]

15. Send mail to the ‘daikon-announce’ mailing list. Use the suggested template below, replacing
<version number> with the actual number of the release.

<to:> daikon-announce@googlegroups.com
<subject:> Daikon version <version number> has been released

Daikon version <version number> is available at:
http://plse.cs.washington.edu/daikon/download/

Please see the entry from the doc/CHANGELOG.md file that appears below for more details.

<your name>

Chapter 7: Making a distribution (making a release) 28

<a copy of the current entry from the doc/CHANGELOG.md file, with
paragraphs refilled (remove unnecessary line breaks that trim lines
to 80 columns for the CHANGELOG.md file but aren’t desirable in email)>

Note that if you use Microsoft Outlook 2010 or 2013 as your mailer, by de-
fault it will insert hard breaks in your outgoing message. See https: / / blog .
techhit . com / 551102-how-to-prevent-outlook-from-adding-line-breaks-to-sent
-plain-text-messages for a work around. You must quit and restart Outlook to activate
the change.

https://blog.techhit.com/551102-how-to-prevent-outlook-from-adding-line-breaks-to-sent-plain-text-messages
https://blog.techhit.com/551102-how-to-prevent-outlook-from-adding-line-breaks-to-sent-plain-text-messages
https://blog.techhit.com/551102-how-to-prevent-outlook-from-adding-line-breaks-to-sent-plain-text-messages

Chapter 8: Analyzing historical versions of Daikon 29

8 Analyzing historical versions of Daikon

Daikon’s version control repository, available at https://github.com/codespecs/daikon,
contains complete development history starting from October 1, 2010, and partial development
history before that time. The reason for this is that converting the full CVS repository would
create a repository that would be too large for convenient use, and that would also be too large
to upload to Google Code or GitHub. The original CVS repository is available for download from
http://plse.cs.washington.edu/daikon/download/inv-cvs/, as files inv-cvsaa through
inv-cvsai. Download all 9 files, and then run the following commands to re-create the CVS
repository, which will be named invariants/:

cat inv-cvsa? > inv-cvs-full.zip
unzip inv-cvs-full.zip

Developers can usually make do with the Git repository, which has complete history for the Java
source code.

The CVS repository is most often used by researchers — for example, in the testing community
— because it contains both a CVS repository and a set of tests that is more extensive than those in
the Daikon distribution. If you are a researcher who uses the Daikon version control history, please
let us know of any publications so that we can publicize them at http://plse.cs.washington.
edu/daikon/pubs/#daikon-testsubject.

The layout of the Daikon CVS repository differs slightly from that of the distribution. For
example, the top-level directory is named invariants/ instead of daikon/.

The remainder of this section points out some pitfalls for such researchers. Although these
problems are easy to avoid, some previous published work has made these mistakes; don’t let that
happen to you!

Recall that Daikon contains two sets of tests (see Chapter 5 [Testing], page 14); you should
include both in any analysis of Daikon’s tests. (Or, if you can analyze only one of the two sets of
tests, then clearly explain that the regression tests are the main tests.) The regression tests use
Makefiles to avoid re-doing unnecessary work, so any description of the time taken to run Daikon’s
tests should be a measurement of re-running the tests after they have been run once, not running
them from a clean checkout or after a make clean command.

Daikon intentionally does not contain tests for third-party libraries that are included (sometimes
in source form) in the Daikon distribution. As one example, the java/jtb/ directory contains an
external library. Therefore, any measurement of Daikon’s code coverage should not include such
libraries, whether distributed in source or as .jar files.

Historically, the file doc/www/mit/index.html in the CVS repository contains information about
how Daikon’s developers use Daikon. This file changes from time to time — for instance, it changed
when a CVS branch was created and later when development on it ceased (see Section 8.1 [Branches],
page 29).

8.1 Branches
The Daikon CVS repository contains two branches: a main trunk and a branch (named

‘ENGINE_V2_PATCHES’) for version 2 of Daikon.

The CVS manual (see section “Branching and merging” of the manual CVS — Concurrent
Versions System) describes CVS branches:

CVS allows you to isolate changes onto a separate line of development,
known as a branch. When you change files on a branch, those changes do
not appear on the main trunk or other branches.

https://github.com/codespecs/daikon
http://plse.cs.washington.edu/daikon/download/inv-cvs/
http://plse.cs.washington.edu/daikon/pubs/#daikon-testsubject
http://plse.cs.washington.edu/daikon/pubs/#daikon-testsubject
https://web.archive.org/web/20140619100950/http://ximbiot.com/cvs/manual/cvs-1.11.23/cvs_5.html

Chapter 8: Analyzing historical versions of Daikon 30

Later you can move changes from one branch to another branch (or the main
trunk) by merging. Merging involves first running cvs update -j, to merge
the changes into the working directory. You can then commit that revision,
and thus effectively copy the changes onto another branch.

In early January 2002 (or perhaps in late 2001), we created the ‘ENGINE_V2_PATCHES’ branch at
the invariants/java/daikon level of the Daikon CVS repository. Primary development contin-
ued along the CVS branch ‘ENGINE_V2_PATCHES’, which we called “Daikon version 2” We called the
CVS trunk “Daikon version 3” it was experimental, and very few people ran its code or performed
development on it. Periodically, all changes made to the branch would be merged into the trunk,
as one large checkin on the trunk. Later, development on version 3 became more common, some
changes were merged from the trunk to the branch, and version 2 was finally retired (and no more
changes were made to the branch) in December 2003.

A regular cvs checkout gets the trunk. The -r flag specifies a branch. For example, to get the
branch as of June 9, 2002, one could do

cvs -d $pag/projects/invariants/.CVS co -r ENGINE_V2_PATCHES \
-D 2003/06/09 invariants/java/daikon

Some warnings about analyzing historical versions of Daikon:

1. When analyzing 2002 (and at least parts of 2003) you should be careful to use the branch, not
the trunk. Or, you could analyze both (but as a single development effort, not as separate
efforts).

2. When a programmer periodically merged changes from the branch to the trunk (or vice versa),
that operation resulted in very large checkins. The times at which these merges occurred is
indicated in file invariants/java/daikon/merging.txt in the repository; for example, this
happened 34 times during calendar year 2002. CVS checkins for the branch properly attribute
and time-stamp the work that appears as a single large checkin on the trunk.

3. There may be long periods of time in the branch (respectively, the trunk) with no checkins, but
that does not necessarily indicate a lacuna in development, as checkins might have occurred
in the meanwhile in the trunk (respectively, the branch).

Appendix A: File formats 31

Appendix A File formats

This chapter contains information about the file format of Daikon’s input files. It is of most
information to those who wish to write a front end, also known as an instrumenter (see Section
“Front ends and instrumentation” in Daikon User Manual). A new front end enables Daikon to
detect invariants in another programming language.

Daikon’s input is conventionally one or more .dtrace data trace files. (Another, optional type
of input file for Daikon is a splitter info file; see Section “Splitter info file format” in Daikon User
Manual.) A trace file is a text file that consists of newline-separated records. There are two basic
types of records that can appear in Daikon’s input: program point declarations, and trace records.
The declarations describe the structure of the trace records. The trace records contain the data on
which Daikon operates — the run-time values of variables in your program.

Each declaration names an instrumented program point and lists the variables at that program
point. A program point is a location in the program, such as a specific line number, or a specific
procedure’s entry or exit. An instrumented program point is a place where the instrumenter may
emit a trace record. A program point declaration may be repeated, so long as the declarations
match exactly (any declarations after the first one have no effect).

A data trace record (also known as a sample) represents one execution of a program point.
The record specifies the program point and gives the run-time values of each variable. The list of
variables in the data trace record must be identical to that in the corresponding declaration. For
a given program point, the declaration must precede the first data trace record for the program
point. It is not required that all the program point declarations appear before any of the data trace
records.

There exist some other declaration-related records; see Section A.3.1 [Declaration-related
records], page 32.

A.1 Declarations in a separate file
Instead of placing both declarations and data trace records in a single file, it is permitted to

place the declarations in one or more .decls declaration files while leaving the data trace records
in the .dtrace file. This can be convenient for tools that perform a separate instrumentation step,
such as dfepl (see Section “dfepl” in Daikon User Manual). Such a tool takes as input a target
program to be analyzed, and produces two outputs: a .decls file and an instrumented program.
Executing the instrumented program produces a .dtrace file containing data trace records for
all the program points that appear in the .decls file. This approach works fine and is easier
to implement in certain situations, but has a few disadvantages. It requires the user to perform
at least two steps — instrumentation and execution — and the existence of two versions of the
program (instrumented and uninstrumented) can lead to confusion or extra work. It is also more
convenient to have a single file that contains all information about a program, rather than multiple
.decls files that must be associated with the .dtrace file.

It is also permitted for a declaration to appear more than once in Daikon’s input. The declaration
must be identical in all occurrences. This is useful when running Daikon with multiple .dtrace
files, each of which contains its own declarations.

A.2 File format conventions
Daikon files are textual, to permit easier viewing and editing by humans. Each record is separated

by one or more blank lines. To permit easier parsing by programs, each piece of information in a
record appears on a separate line.

Outside a record, any line starting with a pound sign (#) or double slashes (//) is ignored as a
comment. Comments are not permitted inside a record.

Appendix A: File formats 32

A.3 Declarations
The trace file (or declaration file) first states the declaration file format version number (see

Section A.3.1.1 [Declaration version], page 32). It may also specify some other information about
the file (see Section A.3.1 [Declaration-related records], page 32). Then, it defines each program
point and its variables.

Indentation is ignored, so it may be used to aid readability. Fields with defaults can be omitted.

As a rule, each line of the declaration file is of the form <field-name> <field-value>.

Some additional details about the declaration file format appear in file daikon/doc/decl_
format.txt in the Daikon source code.

A.3.1 Declaration-related records

A.3.1.1 Declaration version

The declaration version record must be the first record in the file.

The declaration version record is as follows:

decl-version <version>

The current version is 2.0.

Previous versions (see Section A.6 [Version 1 Declarations], page 45) did not include a version
field and are identified by the lack of this field.

A.3.1.2 Input-language declaration

You can specify the language in which the program was written with a record of the form

input-language <language>

The language string is arbitrary and is not used.

A.3.1.3 Variable comparability

The Variable comparability record indicates how the comparability field of a variable declaration
should be interpreted.

Its format is:

var-comparability <comparability-type>

The possible values for comparability-type are implicit and none.

implicit means ordinary comparability as described in Section A.3.3 [Variable declarations],
page 34. (The name implicit is retained for historical reasons.)

This record is optional. The implicit type is the default.

A.3.1.4 ListImplementors declaration

This declaration indicates classes that implement the java.util.List interface, and should be
treated as sequences for the purposes of invariant detection. The syntax is as follows:

ListImplementors
<classname1>
<classname2>
...

Each classname is in Java format (for example, java.util.LinkedList).

The --list_type command-line option to Daikon can also be used to specify classes that im-
plement lists; see Section “Options to control invariant detection” in Daikon User Manual.

Appendix A: File formats 33

A.3.2 Program point declarations

The format of a program point declaration is:

ppt <ppt-name>
<ppt-info>
<ppt-info>
...
<variable-declaration>
<variable-declaration>
...

The program point name can include any character. In the declaration file, blanks must be replaced
by _, and backslashes must be escaped as \\. Program point names must be distinct.

While Daikon does not infer program point relationships from ppt-names, it does require these
names to conform to a set syntax. The following patterns are for the enter, subexit, class and
object ppt-types, respectively.

<fully qualified class name>.<method/function name>(<argument types>):::ENTER
<fully qualified class name>.<method/function name>(<argument types>):::EXIT<id>
<fully qualified class name>:::CLASS
<fully qualified class name>:::OBJECT

Since in most languages a method or function may have multiple exit points, the ppt-name for a
subexit ppt-type must be appended with a unique id. Typically, this is the corresponding source
line number.

The following information about the program point (ppt-info) can be specified:

• ppt-type <type>

Specifies the type of the program point. Possible program point types are point, class,
object, enter, exit, subexit. Except for point all of these types are related to the program
point hierarchy (see Section 4.2 [Dataflow hierarchy], page 12).

A point program point is one that is not involved in a program point hierarchy. This is
normally used when the input is not from a programming language or when there is no dataflow
hierarchy.

• flags <flags>

Specifies one or more flags for this ppt. The possible flags are: static, enter, exit, private,
return. It should be noted that neither Daikon nor Kvasir currently use or output this field.

• parent <relation-type> <parent-ppt-name> <relation-id>

Specifies the program point hierarchy (Section 4.2 [Dataflow hierarchy], page 12).

In particular, each parent field names one parent of this program point. A parent program
point is a point whose samples should include all of the samples at this program point. For
example, an object program point is a parent of each of the method program points in that
object.

The relation-type is the type of parent-child relationship in the hierarchy. There are a few
relationship types used internally by Daikon, but the only one output to the data files is parent.
A parent relationship is one where the program points themselves are explicitly related, such
as an enter and an exit point. All of the variables at one of the points exists at the other.
A user relation is one where a class is used at another point, such as at an enter point. For
example, if a reference to class A were passed to routine ‘r1’, the values found at enter and
exit of ‘r1’ could be applied to the class/object program point for A. By default user relations
are not used because they can be recursive.

The relation-id is a unique integer that identifies this parent relation. They are used when
defining the specific parent relations for variables.

Appendix A: File formats 34

Multiple parent fields can be specified.

A.3.3 Variable declarations

The format of a variable declaration is:

variable <name>
<variable-info>
<variable-info>
...

The variable name is arbitrary, but for clarity, it should match what is used in the programming
language. All characters are legal in a name, but blanks must be represented as _ and backslashes
as \\.

If the variable is an array, .. marks the location of array indices within the variable name. Some
examples of names are:

this.theArray
this.theArray[..]
this.stack.getClass()

The following information about the variable (variable-info) can be specified:

• var-kind <kind> [<relative-name>]

Specifies the variable kind. Possible values are: field, function, array, variable, return.
If field or function are specified, the relative name of the field or function must be specified.
For example, if the variable is this.theArray, the relative name is theArray. Pointers to
arrays are of type field. The arrays themselves (a sequence of values) are of type array. A
var-kind entry is required in each variable block.

• enclosing-var <enclosing-var-name>

The variable that contains this variable. Required for fields and arrays. Required for functions
that represent an instance method. Forbidden for functions that specify a static method or a
function in a non-object-oriented language. A variable is specified by its name. The named
variable must be defined at the same program point. If a variable is omitted (e.g., by the
omit-var switch), any variable for which it is the enclosing variable must be omitted as well.

For example, if the variable is this.theArray, the enclosing variable is this.

• reference-type pointer|offset

Specifies the kind of reference for variables which are structures or classes. The possible values
are pointer or offset. In C, pointer is used if the variable is a pointer, offset is used
when the structure is placed inline. Pointer would be used for all references to Java objects.
Defaults to pointer.

• array <dim>

The number of array dimensions inherited or declared by this variable. The valid values are
0 or 1. This should be specified for any variable that has multiple values. If not specified it
defaults to 0. Future versions of Daikon may support more levels of arrays.

• dec-type <language-declaration>

This is what the programmer used in the declaration of the variable. Names for standard
types should use Java’s names (e.g., int, boolean, java.lang.String, etc.), but names for
user-defined or language-specific types can be arbitrary strings. A dec-type entry is required
in each variable block.

• rep-type <daikon-type>

This describes what will appear in the data trace file. For instance, the declared type might
be char[..] but the representation type might be java.lang.String. Or, the declared type

Appendix A: File formats 35

might be Object but the representation type might be hashcode, if the address of the object
is written to the data trace file. A rep-type entry is required in each variable block.

The representation type should be one of boolean, int, hashcode, double, or
java.lang.String; or an array of one of those (indicated by a [..] suffix).

hashcode is intended for unique object identifiers like memory addresses (pointers) or the
return value of Java’s Object.hashCode method. hashcode is treated like int, except that
the hashcode values are considered uninteresting for the purposes of output. For example,
Daikon will print ‘var has only one value’ instead of ‘var == 0x38E8A’.

• flags <flags>

One or more flags may optionally be specified. Possible values are:

• is_param

Indicates that a given variable is a parameter to a procedure. Some procedures reassign
parameters — essentially using them as local variables. Such uses are not relevant to the
procedure’s external specification. The is_param flag causes Daikon not to print certain
invariants, if the variable has been reassigned.

1. Invariants that use the parameter variable p in its post-state form are not printed.

2. Invariants that use fields of p (such as p.x) are printed only if p has not changed.

3. Some immutable characteristics, such as the size of arrays and data types, are not
printed. (These can change only if p is changed, but then, p would no longer be
interesting.)

• no_dups

Indicates that a collection can not contain duplicates. If it cannot, Daikon does not check
for some invariants that only have meaning for collections that can contain duplicate
elements.

• not_ordered

Indicates that the order of a collection does not have meaning. In this case, Daikon does
not check for element-wise comparisons between it and other collections.

• nomod

Indicates that the variable can never be modified. For example, a variable declared static
final in Java.

• synthetic

Indicates that the variable was added by the front end and is not manifest in the input
program.

• classname

Indicates that the variable indicates the classname of its enclosing variable.

• to_string

Indicates that the variable is the string representation of its enclosing variable.

• non_null

Indicates that the variable can’t take on a null value. In this case, Daikon will not check
for the ‘NonZero’ invariant.

• is_property

Indicates that the variable is a C# property (set by the Celeriac front end). It is used in
output formatting to remove the parentheses from a method call.

• is_enum

Indicates that the variable is an enumerated type (set by the Celeriac front end). Daikon
uses this information to suppress obvious invariants.

Appendix A: File formats 36

• is_readonly

Indicates that the variable is read only (set by the Celeriac front end). Daikon uses this
information to suppress obvious invariants.

• comparability <comparability-key>

The comparability-key indicates which other variables are comparable to this one. The infor-
mation specified here might have been obtained dynamically, or via type-inference-based static
analysis, or in some other manner.

A comparability for a non-array type is a signed integer. Two variables at the same program
point are considered comparable if both integers are the same, or if either integer is negative
(that is, a negative number means “comparable to every other variable”). A comparability for
an array type contains an integer for each index and for the contents; for instance, ‘8[5]’ means
that the array elements have comparability ‘8’ and the array indices have comparability ‘5’.
Similarly, ‘5[22][17]’ is a comparability for a two-dimensional array. An array comparison
succeeds if comparisons over each component succeed.

Variables at different program points are never compared to one another. Use of the same
number at different program points does not indicate any relationship between the variables,
and a given variable may have a different comparability integer at different program points.

As an example, in the following code:

int sum(int len, int[] a) {
int sum=0;
for (int i=0; i++; i<len)
sum += a[i];

return sum;
}

variables i and len are comparable to one another (and to indices of array a). Furthermore,
the result is comparable to the elements of array a. The comparability keys for these variables
might look like

len - comparability 5
a - comparability 8[5]
return - comparability 8

A comparability entry is required in each variable block.

• parent <parent-ppt> <relation-id> [<parent-variable>]

Optionally specifies the parent variable of this variable in the program point/variable hierarchy.
The parent-ppt is the name of the parent program point. The relation-id must be one of the
relationship ids specified for this program point. The parent-variable is the name of this
variable’s parent in the parent program point. If the names are the same, it can be omitted.

• constant <value>

Optionally specifies a constant value for this variable. If the variable has a compile-time
constant value that is specified in the declaration, then the variable must be omitted from the
data trace records.

• function-args <arg1> <arg2> ...

If this variable is computed as a function of some other variable, specifies the arguments to the
function; otherwise, the function-args line must be omitted. The arguments are specified by
their external variable name. Multiple arguments are blank separated. For example

function-args a.b this.f1

specifies that the function takes two arguments which are a.b and this.f1. As with enclosing
variables, each of the arguments must be defined as variables.

Appendix A: File formats 37

• min-value <v>

Optionally specifies the minimum possible value for this variable (for instance, due to language-
specific restrictions on the type). This enables Daikon to suppress invariants that would be
“obvious” in that case, such as var >= v.

• max-value <v>

Optionally specifies the maximum possible value for this variable (for instance, due to language-
specific restrictions on the type). This enables Daikon to suppress invariants that would be
“obvious” in that case, such as var <= v.

• min-length <v>

Optionally specifies the minimum possible length for this variable (for instance, due to
language-specific restrictions on the type). This enables Daikon to suppress invariants that
would be “obvious” in that case, such as size(var) >= v.

• max-length <v>

Optionally specifies the maximum possible length for this variable (for instance, due to
language-specific restrictions on the type). This enables Daikon to suppress invariants that
would be “obvious” in that case, such as size(var) <= v.

• valid-values [<v1> <v2> ... <vN>]

Optionally specifies all the possible values for this variable (for instance, due to language-
specific restrictions on the type). This enables Daikon to suppress invariants that would be
“obvious” in that case, such as v is one of {v1, v2, ..., vN}.

A.4 Data trace records
A data trace record (also known as a sample) contains run-time value information. Its format is:

<program-point-name>
this_invocation_nonce
<nonce-string>
<varname-1>
<var-value-1>
<var-modified-1>
<varname2>
<var-value-2>
<var-modified-2>
...

In other words, the sample record contains:

• name of the program point

• optionally, an arbitrary string (a nonce) used to match up procedure entries (whose names
conventionally end with :::ENTER) with procedure exits (whose names conventionally end with
:::EXIT). This is necessary in concurrent systems because there may be several invocations of
a procedure active at once and they do not necessarily follow a stack discipline, being exited in
the reverse order of entry. For non-concurrent systems, this nonce is not necessary, and both
the line this_invocation_nonce and the nonce value may be omitted.

• for each variable:

• name

• value

• if an integer: sequence of digits, optionally preceded by a minus sign. Boolean values
are written as the number 0 (for false) or the number 1 (for true). For pointers, the
value may be null.

Appendix A: File formats 38

• if a string: characters surrounded by double-quotes. Internal double-quotes and back-
slashes are escaped by a backslash. Newlines and carriage returns are represented as
‘\n’ and ‘\r’, respectively.

• if an array: open bracket ([), elements separated by spaces, close bracket (]). (Also,
the array name should end in ‘[..]’; use ‘a[..]’ for array contents, but ‘a’ for the
identity of the array itself.)

The value representation may also be the string nonsensical; see Section A.4.1 [Nonsen-
sical values], page 38. A string or array value is never null. A reference to a string or
array may be null, in which case the string or array value is printed as nonsensical.

• modified? (0, 1, or 2). This value is 0 if the variable has not been assigned to since the
last time this program point was executed, and 1 if the variable has been assigned to
since then. It is safe for an implementation to always set it to 1. It is also safe to always
set it to 0, because Daikon corrects obviously incorrect modification bits (such as 0 for a
never-before-seen value).

The special value 2 should be used only (and always) when the value field is nonsensical.

The variables should appear in the same order as they did in the declaration of the program
point, without omissions or additions.

A.4.1 Nonsensical values for variables

Some trace variables and derived variables may not have a value because the expression that
computes it cannot be evaluated. In such a circumstance, the value is said to be nonsensical, it is
written in the trace file as nonsensical, and its modified field must be 2. Examples include

• x when x is uninitialized or deallocated,

• x.y when x is null (or uninitialized or deallocated)

• a[i] when i is outside the bounds of a (or uninitialized or deallocated, or a is null, uninitialized,
or deallocated)

For trace variables, it is the responsibility of the front end to perform a check at run time whenever
a variable’s value is about to be output to the trace, and to output the value ‘nonsensical’ (see
Section A.4.1 [Nonsensical values], page 38) rather than crashing the program or outputting an
uninitialized or meaningless value. (Determining when an expression’s value is meaningless is the
most challenging part of writing an instrumenter for a language like C, since it requires tracking
memory allocation and initialization.) For derived variables created by Daikon, Daikon does the
same thing, setting values to ‘nonsensical’ when appropriate. For controlling Daikon’s output in
the presence of nonsensical values, see the daikon.Daikon.guardNulls configuration option (see
Section “General configuration options” in Daikon User Manual).

A.4.2 Variables that do not appear in trace records

A trace record should contain exactly the same variables as in the corresponding declaration.
There is one exception: for efficiency, compile-time constants (e.g., static final variables in Java)
are omitted from the trace record, since they would have the same value every time.

Furthermore, neither the declarations nor the trace records contain derived variables (see Section
“Variable names” in Daikon User Manual).

A.5 Example files
Here are portions of two files StackArTester.decls and StackArTester.dtrace, for a Java

class that implements a stack of integers using an array as the underlying data structure. You
can see many more examples by simply running an existing front end on some Java, C, or Perl
programs and viewing the resulting files.

Appendix A: File formats 39

A.5.1 Example declaration file

This is part of the file StackArTester.decls, a declaration file for the StackAr.java program
(see Section “StackAr example” in Daikon User Manual).

ppt DataStructures.StackAr.push(java.lang.Object):::ENTER

ppt-type enter

parent parent DataStructures.StackAr:::OBJECT 1

variable this

var-kind variable

dec-type DataStructures.StackAr

rep-type hashcode

flags is_param nomod

comparability 22

parent DataStructures.StackAr:::OBJECT 1

variable this.theArray

var-kind field theArray

enclosing-var this

dec-type java.lang.Object[]

rep-type hashcode

flags nomod

comparability 22

parent DataStructures.StackAr:::OBJECT 1

variable this.theArray.getClass().getName()

var-kind function getClass().getName()

enclosing-var this.theArray

dec-type java.lang.Class

rep-type java.lang.String

function-args this.theArray

flags nomod synthetic classname

comparability 22

parent DataStructures.StackAr:::OBJECT 1

variable this.theArray[..]

var-kind array

enclosing-var this.theArray

array 1

dec-type java.lang.Object[]

rep-type hashcode[]

flags nomod

comparability 22

parent DataStructures.StackAr:::OBJECT 1

variable this.theArray[..].getClass().getName()

var-kind function getClass().getName()

enclosing-var this.theArray[..]

array 1

dec-type java.lang.Class[]

rep-type java.lang.String[]

function-args this.theArray[]

flags nomod synthetic classname

comparability 22

parent DataStructures.StackAr:::OBJECT 1

variable this.topOfStack

var-kind field topOfStack

enclosing-var this

dec-type int

rep-type int

flags nomod

comparability 22

parent DataStructures.StackAr:::OBJECT 1

Appendix A: File formats 40

variable DataStructures.StackAr.DEFAULT_CAPACITY

var-kind variable

dec-type int

rep-type int

constant 10

flags nomod

comparability 22

parent DataStructures.StackAr:::OBJECT 1

variable x

var-kind variable

dec-type java.lang.Object

rep-type hashcode

flags is_param nomod

comparability 22

variable x.getClass().getName()

var-kind function getClass().getName()

enclosing-var x

dec-type java.lang.Class

rep-type java.lang.String

function-args x

flags nomod synthetic classname

comparability 22

ppt DataStructures.StackAr.push(java.lang.Object):::EXIT103

ppt-type subexit

parent parent DataStructures.StackAr:::OBJECT 1

variable this

var-kind variable

dec-type DataStructures.StackAr

rep-type hashcode

flags is_param nomod

comparability 22

parent DataStructures.StackAr:::OBJECT 1

variable this.theArray

var-kind field theArray

enclosing-var this

dec-type java.lang.Object[]

rep-type hashcode

flags nomod

comparability 22

parent DataStructures.StackAr:::OBJECT 1

variable this.theArray.getClass().getName()

var-kind function getClass().getName()

enclosing-var this.theArray

dec-type java.lang.Class

rep-type java.lang.String

function-args this.theArray

flags nomod synthetic classname

comparability 22

parent DataStructures.StackAr:::OBJECT 1

variable this.theArray[..]

var-kind array

enclosing-var this.theArray

array 1

dec-type java.lang.Object[]

rep-type hashcode[]

flags nomod

comparability 22

Appendix A: File formats 41

parent DataStructures.StackAr:::OBJECT 1

variable this.theArray[..].getClass().getName()

var-kind function getClass().getName()

enclosing-var this.theArray[..]

array 1

dec-type java.lang.Class[]

rep-type java.lang.String[]

function-args this.theArray[]

flags nomod synthetic classname

comparability 22

parent DataStructures.StackAr:::OBJECT 1

variable this.topOfStack

var-kind field topOfStack

enclosing-var this

dec-type int

rep-type int

flags nomod

comparability 22

parent DataStructures.StackAr:::OBJECT 1

variable DataStructures.StackAr.DEFAULT_CAPACITY

var-kind variable

dec-type int

rep-type int

constant 10

flags nomod

comparability 22

parent DataStructures.StackAr:::OBJECT 1

variable x

var-kind variable

dec-type java.lang.Object

rep-type hashcode

flags is_param nomod

comparability 22

variable x.getClass().getName()

var-kind function getClass().getName()

enclosing-var x

dec-type java.lang.Class

rep-type java.lang.String

function-args x

flags nomod synthetic classname

comparability 22

ppt DataStructures.StackAr:::CLASS

ppt-type class

variable DataStructures.StackAr.DEFAULT_CAPACITY

var-kind variable

dec-type int

rep-type int

constant 10

flags nomod

comparability 22

ppt DataStructures.StackAr:::OBJECT

ppt-type object

parent parent DataStructures.StackAr:::CLASS 1

variable this

var-kind variable

dec-type DataStructures.StackAr

Appendix A: File formats 42

rep-type hashcode

flags is_param nomod

comparability 22

variable this.theArray

var-kind field theArray

enclosing-var this

dec-type java.lang.Object[]

rep-type hashcode

flags nomod

comparability 22

variable this.theArray.getClass().getName()

var-kind function getClass().getName()

enclosing-var this.theArray

dec-type java.lang.Class

rep-type java.lang.String

function-args this.theArray

flags nomod synthetic classname

comparability 22

variable this.theArray[..]

var-kind array

enclosing-var this.theArray

array 1

dec-type java.lang.Object[]

rep-type hashcode[]

flags nomod

comparability 22

variable this.theArray[..].getClass().getName()

var-kind function getClass().getName()

enclosing-var this.theArray[..]

array 1

dec-type java.lang.Class[]

rep-type java.lang.String[]

function-args this.theArray[]

flags nomod synthetic classname

comparability 22

variable this.topOfStack

var-kind field topOfStack

enclosing-var this

dec-type int

rep-type int

flags nomod

comparability 22

variable DataStructures.StackAr.DEFAULT_CAPACITY

var-kind variable

dec-type int

rep-type int

constant 10

flags nomod

comparability 22

parent DataStructures.StackAr:::CLASS 1

A.5.2 Example data trace file

This is part of file StackArTester.dtrace, which you can create by running the instrumented
StackAr.java program (see Section “StackAr example” in Daikon User Manual). This excerpt
contains only the first two calls to push and the first return from push, along with the associated
object program point records; omitted records are indicated by ellipses.

Appendix A: File formats 43

...

DataStructures.StackAr.push(java.lang.Object):::ENTER

this_invocation_nonce

104

this

812272602

1

this.theArray

312077835

1

this.theArray.getClass().getName()

"java.lang.Object[]"

1

this.theArray[..]

[null]

1

this.theArray[..].getClass().getName()

[null]

1

this.topOfStack

-1

1

x

1367164551

1

x.getClass().getName()

"DataStructures.MyInteger"

1

...

DataStructures.StackAr.push(java.lang.Object):::EXIT103

this_invocation_nonce

104

this

812272602

1

this.theArray

312077835

1

this.theArray.getClass().getName()

"java.lang.Object[]"

1

this.theArray[..]

[1367164551]

1

this.theArray[..].getClass().getName()

["DataStructures.MyInteger"]

1

this.topOfStack

0

1

x

1367164551

1

x.getClass().getName()

"DataStructures.MyInteger"

Appendix A: File formats 44

1

...

DataStructures.StackAr.push(java.lang.Object):::ENTER

this_invocation_nonce

159

this

2007069404

1

this.theArray

142345952

1

this.theArray.getClass().getName()

"java.lang.Object[]"

1

this.theArray[..]

[null]

1

this.theArray[..].getClass().getName()

[null]

1

this.topOfStack

-1

1

x

111632506

1

x.getClass().getName()

"DataStructures.MyInteger"

1

...

DataStructures.StackAr.push(java.lang.Object):::EXIT103

this_invocation_nonce

159

this

2007069404

1

this.theArray

142345952

1

this.theArray.getClass().getName()

"java.lang.Object[]"

1

this.theArray[..]

[111632506]

1

this.theArray[..].getClass().getName()

["DataStructures.MyInteger"]

1

this.topOfStack

0

1

x

111632506

1

Appendix A: File formats 45

x.getClass().getName()

"DataStructures.MyInteger"

1

...

A.6 Version 1 Declarations
This section describes the original version (1.0) of declaration records. These are now obsolete

and should not be used.

A declarations file can contain program point declarations, VarComparability declarations, and
ListImplementors declarations.

A.6.1 V1 Program point declarations

The format of a program point declaration is:

DECLARE
program-point-name
varname1
declared-type1 [# auxiliary-information1]
representation-type1 [= constant-value1]
comparable1
varname2
declared-type2 [# auxiliary-information2]
representation-type2 [= constant-value2]
comparable2
...

Program point information includes:

• name (tag) of this program point, an arbitrary string containing no tab or newline characters.
This name contains information such as the class name or method name; what information
is contained depends on which instrumenter is being used. See Section A.6.2 [V1 pptname
format], page 47, for a full specification of the naming format.

• for each variable:

• name: a string containing no tabs or newlines. See Section “Variable names” in Daikon
User Manual.

• declared type: this is what the programmer used in the declaration of the variable. Array
types must be suffixed by the proper number of ‘[]’ to indicate their dimensionality.
Names for standard types should use Java’s names (e.g., int, boolean, etc.), but names
for user-defined or language-specific types can be arbitrary strings.

• auxiliary information: optionally, Daikon can be given information about the meaning of
the variable to help it better interpret the values it later sees. Information is provided as a
comma-separated list of items, with each item in the form of ‘key = value’. Unrecognized
keys are silently ignored. All values are either ‘true’ or ‘false’. Mainly, this information
is used for collections, which are presented to Daikon as arrays. Valid keys are:

hasDuplicates
Whether a collection can contain duplicates. If it cannot, Daikon does not
check for some invariants that only have meaning for collections that can
contain duplicate elements.

Appendix A: File formats 46

hasOrder Whether order has meaning for a collection. If order does not have meaning in
a collection, then Daikon does not check for element-wise comparisons between
it and other collections.

hasNull Whether zero has the special meaning null for the variable or collection. If it
does, then Daikon checks for whether a value or the elements in a collection
are null.

nullTerminated
Whether a collection has a value (usually null) that ends its representation.
If it does, then Daikon looks at the collection’s size and at the collection’s
size-1 as “interesting” values. If it does not, then Daikon only looks at the
collection’s size.

isParam Whether a given variable is a parameter to a method. If a variable is a
parameter, Daikon avoids printing some information that would be considered
uninteresting for parameters. First, invariants that use the parameter variable
p in its post-state form are not printed. Second, invariants that use fields of p
(such as p.x) are printed only if p has not changed. Lastly, some immutable
characteristics, such as the size of arrays and data types are not printed (both
can be changed if p is changed, but then, p would no longer be interesting).

• representation type: this describes what will appear in the data trace file. For instance, the
declared type might be char[] but the representation type might be java.lang.String.
Or, the declared type might be Object but the representation type might be hashcode,
if the address of the object is written to the data trace file.

The representation type should be one of boolean, int, hashcode, double, or
java.lang.String; or an array of one of those (indicated by a [] suffix, as in Java).
Hashcodes are treated like integers, except that their actual values are considered
uninteresting for the purposes of output; they are intended for unique object identifiers
like memory addresses or the return value of Java’s Object.hashCode method.

The representation type may optionally be followed by an equals sign and a value; in that
case, the variable is known to have a compile-time constant value and should be omitted
from the data trace file.

• comparable variables. This information indicates which other variables are comparable to this
one.

The point of comparability is that Daikon should not compare unrelated quantities. For exam-
ple, each person’s height in centimeters may always be less than their birth year, but it is not
helpful for Daikon to output ‘height < birthyear’, because the two variables are measuring
incomparable quantities. (In this case, the variables use different units of measurement.)

Variable comparability information helps Daikon to avoid computing information over unre-
lated variables. This saves time and (more importantly) improves the quality of Daikon’s
output. For more details, see the paper “Quickly detecting relevant program invariants”.

Variable comparability information may be obtained dynamically (see Section “Dynamic ab-
stract type inference (DynComp)” in Daikon User Manual), via type-inference based analysis,
or in some other manner. In any event, Daikon reads it from the variable declarations.

A comparability for a non-array type is a signed integer. Two variables at the same program
point are considered comparable if both integers are the same, or if either integer is negative.
A comparability for an array type must contain an integer for each index and for the contents;
for instance, ‘5[22][17]’ for a two-dimensional array. Comparisons succeed if comparisons
over each component succeed.

Regardless of comparability, variables at different program points are never compared to one
another. Use of the same comparability integer at different program points does not indicate

http://homes.cs.washington.edu/~mernst/pubs/invariants-relevance-icse2000-abstract.html

Appendix A: File formats 47

any relationship between the variables, and a given variable may have a different comparability
integer at different program points.

As an example, in the following code:

int sum(int len, int[] a) {
int sum=0;
for (int i=0; i++; i<len)
sum += a[i];

return sum;
}

variables i and len are comparable to one another (and to indices of array a). Furthermore,
the result is comparable to the elements of array a. A declaration file for these variables might
look like

len
int
int
5
a
int[]
int[]
8[5]
return
int
int
8

A.6.2 Program point name format specification

Instrumenting code creates a .decls file that contains program point names such as:

DataStructures.StackAr.push(java.lang.Object):::ENTER
DataStructures.StackAr.push(java.lang.Object):::EXIT99
PolyCalc.RatNum.RatNum(int, int):::ENTER
PolyCalc.RatNum.RatNum(int, int):::EXIT55
PolyCalc.RatNum.RatNum(int, int):::EXIT67

This section describes the format of these program point names. Someone writing an instrumenter
for a new language must be sure to follow this format specification.

A program point name is a string with no tabs or newlines in it. The basic format is
‘topLevel.bottomLevel:::pptInfo’. For the first example given above, the top level of the hier-
archy would be DataStructures.StackAr, the bottom level would be push(java.lang.Object),
and the program point information would be ENTER.

topLevel may contain any number of periods (‘.’). bottomLevel and pptInfo may not contain
any periods. The string ‘:::’ may only appear once.

topLevel and pptInfo are required (i.e., they must be non-empty), as are the period to the right
of topLevel and the colons to the left of pptInfo. However, bottomLevel is optional.

By convention, for Java topLevel consists of the class name, and bottomLevel consists of the
method name and method signature.

For C, topLevel consists of a filename (or a single period for global functions), and bottomLevel
could consist of a function name and signature. More precisely, names of C program points follow
these conventions:

• Names of program points for file-static functions are prefixed with the name of the source file,
with ‘.’ characters mapped to ‘_’, followed by a ‘.’.

Appendix A: File formats 48

• Names of program points for file-scope functions with external linkage are prefixed with ‘..’.
For example, a global function program point might be named ‘..main():::ENTER’., the first
period denoting that it is global in scope and the second denoting the separator between the
toplevel and bottomlevel parts of the name.

• Names of C++ functions that are class or namespace members are prefixed with the name(s)
of their classes or namespaces, with the C++ ‘::’ syntax mapped onto the Java ‘.’ syntax used
by Daikon.

For an Input Output Automaton, topLevel consists of an Automaton name and bottomLevel
consists of information for a transition state.

By convention, the entry and exit points for a function have names of a special form so that they
can be associated with one another. (Currently, those names end with :::ENTER and :::EXIT.)
This convention permits Daikon to generate pre-state variables (see Section “Variable names” in
Daikon User Manual) automatically at procedure exit points, so front ends need not output them
explicitly. When there are multiple exit points, then each one should be suffixed by a number (such
as a line number, for example, foo::EXIT22). Daikon produces the main (non-numbered) :::EXIT
point automatically. All the numbered exits should contain the same set of variables; in general,
this means that local variables are not included at exit points. Daikon requires that declarations for
:::ENTER program points appear before any declarations for matching :::EXIT program points.

Another convention is to have another program point whose bottomLevel is empty and whose
pptInfo is OBJECT: for example, StackAr:::OBJECT. This contains the representation invariant
(sometimes called the object invariant) of a class. This program point is created automatically by
Daikon; it need not appear in a trace file.

A.6.3 V1 VarComparability declaration

There is a special VarComparability declaration that controls how the comparability field in
program point declarations is interpreted. The default VarComparability is implicit, which
means ordinary comparability as described in Section A.3.2 [Program point declarations], page 33.
(The name implicit is retained for historical reasons.) You can override it as follows:

VarComparability
none

As with all records in Daikon input files, a blank line is required between this record and the next
one.

A.6.4 V1 ListImplementors declaration

This declaration indicates classes that implement the java.util.List interface, and should be
treated as sequences for the purposes of invariant detection. The syntax is as follows:

ListImplementors
<classname1>
<classname2>
...

Each classname is in Java format (for example, java.util.LinkedList).

The --list_type command-line option to Daikon can also be used to specify classes that im-
plement lists; see Section “Options to control invariant detection” in Daikon User Manual.

General Index 49

General Index

.

.decls file . 32

.decls file (version 1) . 45

.dtrace file . 37

.jpp files . 2

A
adding new derived variables . 4
adding new invariants . 3
adding new output formats . 4
adding new regression tests . 17
adding new suppressors . 8
adding new unit tests . 14
adding track logging . 11

B
branches, in CVS repository . 29

C
C programs, instrumenting . 6
changing Daikon . 2
comparability, for variables . 32
comparability, for variables (.decls format version 1)

. 46
compiling Daikon . 2
customizing Daikon . 2

D
Daikon internals . 12
data trace format . 37
dataflow hierarchy . 12
deallocated pointers . 6
debugging Daikon . 10
declaration file format . 34
declaration format . 32
derived variable . 4

E
Eclipse . 2
efficiency issues . 12
equality optimization . 13
extending Daikon . 2

F
file formats . 31
front end, writing . 4

G
Git repository . 2, 29

H
hashcode type, for variables . 35
hierarchy . 12

I
instrumenting C programs . 6
instrumenting Java programs . 4
invalid values . 6

J
Java programs, instrumenting . 4
jpp files . 2

L
logging . 10

M
missing values for variables, see nonsensical values . . 38
modified bit . 38
modifying Daikon . 2

N
new derived variables . 4
new invariants . 3
new output formats . 4
new regression tests . 17
new suppressors . 8
new unit tests . 14
non-checking of invariants . 12
non-instantiation of invariants . 12
non-printing of invariants . 12
nonce, invocation . 38
nonsensical values . 6
nonsensical values for variables . 38

O
optimizations . 12
output format, defining new . 4

P
pointer variables, see hashcode type 35

General Index 50

R
regression tests . 17
repository . 2, 29

S
source code . 2
suppressors, adding new . 8

T
testing Daikon . 14
this invocation nonce . 38
track log output . 11
track logging . 10

U
uninitialized variables . 6

unit testing . 14

units of measurement, see variable comparability . . . 32

V
valid values . 6

variable comparability . 32

variable comparability (.decls format version 1) . . . 46

variable, derived . 4

version control repository . 2

Version control repository . 29

	Introduction
	Extending Daikon
	Compiling Daikon
	Requirements for compiling Daikon

	Source code (version control repository)
	Using Eclipse
	New invariants
	New derived variables
	New formatting for invariants
	New front ends
	Example instrumented Java program
	Instrumenting C programs

	New suppressors
	Reading dtrace files
	System.exit

	Debugging Daikon
	Track logging
	Adding track logging
	Track log output

	Daikon internals
	Avoiding work for redundant invariants
	Dataflow hierarchy
	Equality optimization

	Testing
	Unit testing
	Invariant format testing
	Sample Testing
	Assertions
	Example file

	Regression tests
	Kvasir regression tests
	Adding regression tests

	Editing Daikon source code
	Eclipse setup
	Start up Eclipse
	Work on existing coding projects
	Import an existing project
	Importing a different existing project

	Interaction with external tools
	Using the Eclipse debugger
	Using Git with Eclipse

	Editing daikon.texinfo

	Making a distribution (making a release)
	Directory layout requirements
	Distribution setup instructions
	Getting the latest version of dependencies
	The day before the release
	Steps for making the distribution

	Analyzing historical versions of Daikon
	Branches

	File formats
	Declarations in a separate file
	File format conventions
	Declarations
	Declaration-related records
	Declaration version
	Input-language declaration
	Variable comparability
	ListImplementors declaration

	Program point declarations
	Variable declarations

	Data trace records
	Nonsensical values for variables
	Variables that do not appear in trace records

	Example files
	Example declaration file
	Example data trace file

	Version 1 Declarations
	V1 Program point declarations
	Program point name format specification
	V1 VarComparability declaration
	V1 ListImplementors declaration

	General Index

